
It’s About Time: Analyzing Flow Table Update Latency
in SDN Switch Architectures

Fabricio M. Mazzola1, Daniel S. Marcon1,2, Miguel C. Neves1, and Marinho P. Barcellos1

1Institute of Informatics – Federal University of Rio Grande do Sul, RS, Brazil
2University of Vale do Rio dos Sinos - Unisinos, RS, Brazil

Email: {fmmazzola, daniel.stefani, mcneves, marinho}@inf.ufrgs.br

Abstract—Forwarding devices are a key element of Software-
Defined Networking (SDN). The architectures of these devices
(also known as switches) differ with respect to implementation de-
signs (software vs. hardware), use of memories (TCAM vs. RAM)
and match-action structures (hash table vs. binary tree). These
factors must be taken into account while predicting flow table
update latency, i.e., how efficiently a switch will deal with control
plane requests. Recent work either focuses on the performance of
devices equipped with TCAM or performs a shallow comparison
between a few different designs. In this paper, we perform
an in-depth evaluation, highlighting differences among distinct
switch architectures. Specifically, we define a robust measurement
methodology and use it to determine the performance of switches
when executing each key flow table operation (namely insertion,
modification, and deletion) in multiple scenarios. Results show
that different switch architectures and OpenFlow parameters can
significantly influence flow table update latency. In particular, (i)
the contrast in latency may scale up to three orders of magnitude
for rule insertion; (ii) improper OpenFlow parameterization may
increase flow setup times by a factor of 12x for modification and
up to 6x for deletion within the same switch; and (iii) Open
vSwitch presents variable performance and bimodal patterns for
rule deletion. Our findings highlight the importance of under-
standing the operation of switches with different architectures
and the need for an accurate configuration of the control plane.

I. INTRODUCTION

Generalized forwarding introduced by Software-Defined
Networking (SDN) [1] allows fine-grained management of
flows. A logically centralized network controller installs rules
(which describe network policies) in flow tables of forwarding
devices (switches). These rules define how flows are handled
by switches. Since the size of tables is typically limited, only
a small number of rules can be placed in each switch at
the same time. Given this constraint, switch operation usually
requires rules to be inserted, modified and deleted from tables
at potentially high frequencies. For example, in large-scale
datacenter networks, millions of new active flows may arrive
and need to be configured per second [2], [3]. A delayed flow
table configuration may not only cause packets to be dropped,
but also result in increased latency, negatively affecting time-
sensitive applications (in this context, even 1 ms of added
delay may be unacceptable [4], [5]).

Current forwarding devices are not limited to hardware
designs using TCAMs (Ternary Content-Addressable Mem-
ory). Different trends (such as network virtualization [6] and
programmable data planes [7]) have introduced new tech-
niques to build SDN switches with different implementation

designs (software vs. hardware), use of memories (TCAM vs.
RAM) and match-action structures (hash table vs. binary tree).
Additionally, each design may have certain details intrinsic to
its implementation, such as limited support for rule priorities
or types of matches (e.g., wildcard vs. exact match rules).

Given this heterogeneity, it is challenging to predict how
these switches will perform when dealing with control plane
requests. Previous work [8], [9], [10], [11] has found variabil-
ity in performance when different switches process and handle
control plane messages. Despite the contribution of previous
studies, they are either limited by the depth of the comparison
between switch designs or ignore altogether hybrid devices
with different kinds of memory. Besides, as we will show,
to date the differences in latency among architectures are not
well understood.

In this paper, we conduct a comprehensive measurement
of flow table update latency, highlighting differences among
distinct switch architectures: hardware switch using TCAM,
software switch using RAM, and a whitebox device with
flow tables implemented as either TCAM or as RAM hash
tables1. To evaluate these devices, we define a robust and
systematic measurement methodology composed of multiple
scenarios. More specifically, we use one similar instance
of each switch architecture to measure the time to execute
the three fundamental table update operations (rule insertion,
modification and deletion). This latency reflects the time to
modify the switch table only, disregarding propagation delay
and system call latency. Moreover, we vary several factors in
our experiments, such as rule match type, rule priority and
OpenFlow parameters.

The main findings are described as follows. First, we show
that latency disparity between switch architectures for rule
insertion can be highly variable and reach up to three orders
of magnitude, depending on the priority pattern used. Second,
latency for rule modification and deletion is not influenced by
rule match type and priority pattern. Surprisingly, it is signifi-
cantly affected by the OpenFlow strict parameter, which, when
absent, may increase flow configuration time within the same
device up to 10x and 6x for rule modification and deletion,
respectively. Finally, we reveal previously unknown anomalous
behaviors, with high variability and bimodal patterns, for the

1Due to a limitation of the whitebox device, it was not possible to evaluate
the operational mode combining TCAM and RAM tables simultaneously.

software switch (Open vSwitch – OVS) when removing flow
entries.

Our observations show three crucial aspects for perfor-
mance divergence in existing switch architectures. First, switch
hardware is directly related to the efficiency of some table
update operations, such as insertion with priority patterns. The
intrinsic differences in flow table implementation among all
architectures is highly responsible for the significant disparity
of flow table update latency. The high latency may hinder
time-sensitive applications, increase packet loss and decrease
the efficiency of high-performance networks. Second, switch
design decisions play an important role regarding the effi-
ciency of table update operations. As we show in Section V,
the high variability and bimodal behavior of OVS are caused
by an implementation decision which negatively affects flow
configuration time. Third, an inadequate use of OpenFlow
parameters may significantly impact switch performance and
consistency of network policies. These conclusions show that
a low-level (architectural) understanding of how a switch
operates and the correct use of OpenFlow parameters can
drastically influence network performance.

The remainder of the paper is organized as follows. Sec-
tion II examines related work and highlights the novelty of our
paper. Section III provides a background on different existing
switch architectures, detailing the set of devices used in this
work and their main characteristics. In Section IV, we describe
the methodology used to evaluate the switches accurately, in-
cluding environment, metrics and general experimental setup.
In Section V, we detail the performed experiments, present the
obtained results and analyze the findings of the evaluation.
Finally, Section VI closes the paper with final remarks and
perspectives for future work.

II. RELATED WORK

Previous studies investigating the performance of flow table
management can be classified in two categories: TCAM-only
and multi-architecture based measurements. We describe each
category as follows.

TCAM-only measurements. Chen and Benson [12] evalu-
ate the impact of TCAM switches when dealing with control
plane actions, considering real network traces and different
types of SDN applications. However, the devices are evaluated
through simulations using empiric models, which may not
represent real switches precisely. Kuzniar et al. [9] do not
provide an in-depth evaluation of flow table update latency.
Specifically, the measurements do not consider the latency of
rule insertion and deletion individually, which makes it diffi-
cult to understand how each operation impacts control plane
performance. He et al. [8] present an extensive evaluation of
switch performance. However, the employed methodology is
unable to isolate the measured control plane latencies from
potential noises introduced by other components, such as the
packet generator.

Multi-architecture based measurements. Huang et al. [13]
measure the query completion time for a specific application
in different switches. Their investigation does not explicitly

consider flow table update latency for the architectures in the
paper. Sieber et al [10] evaluate TCAM and RAM switch up-
date latency for rule insertion, using only simplistic scenarios
(such as insertion of a single rule in an empty table). Lazaris et
al. [11] perform measurements for two architectures (TCAM
and RAM switches), but do not consider the operation of rule
deletion by itself and provide a limited evaluation of a subset
of devices.

Unlike previous work, in this paper we report results based
on an extensive evaluation of different switch architectures.
More specifically, we (i) are the first to identify and measure
the influence of OpenFlow parameters in flow table update
latency; (ii) define a robust methodology, which considers a
range of evaluation scenarios and factors; and (iii) evaluate
a broader set of switch architectures (TCAM-only, RAM-
only and hybrid TCAM and RAM). We detail the evaluated
architectures and the methodology in the next two sections.

III. SWITCH ARCHITECTURES

Nowadays, there is a vast diversity of SDN-enabled for-
warding devices. The architectures of these devices differ with
respect to implementation designs (software vs. hardware), use
of memories (TCAM vs. RAM) and match-action structures
(hash table vs. binary tree). In this section, we detail the ex-
isting architectures and then, the devices used in experiments.

A. Existing Architectures

We consider three SDN switch architectures, which repre-
sent a comprehensive set of devices: hardware switch using
TCAM, software switch using RAM and hybrid devices.

TCAM hardware switch. This memory executes parallel
lookup of the entire flow table at line-rate speed, providing fast
packet classification. The efficient search, however, demands a
high energy consumption, since all memory cells are activated
at the same time for a single search in the table. In addition
to the power consumption, the high cost per bit hinders
large flow tables in TCAM switches [14]. In this context,
network policies may need to be aggregated in wildcard
rules. Note that, for some applications, this aggregation may
potentially complicate (or, in some occasions, prevent) fine-
grained management of flows.

RAM software switch. These devices are executed, usually,
in general-purpose processors with a high amount of memory
available. On one hand, the quantity of memory allows a fine-
grained specification of network policies and flow manage-
ment. On the other, the lack of dedicated hardware for packet
forwarding leads to a lower transmission rate and higher CPU
usage [15]. The limited throughput and inefficient CPU usage
prevent the use of these devices in several contexts.

Hybrid hardware switch. TCAM switches are more effi-
cient than RAM-based devices in terms of lookup response
because of the ternary memory, but more expensive and typ-
ically limited in number of entries. Hybrid switches combine
the use of TCAM and RAM tables and allow the utilization of
reconfigurable match tables. For example, in a scenario which
requires fine-grained control of flows, the number of rules to

Model CPU RAM Table size (entries)
TCAM CN5010 500MHz 512MB 2,5K

HTCAM 2K TCAM
HRAM

P1010 533MHz 2GB 32K RAM
RAM (Open vSwitch) i3 3.10GHz 4GB 1-2M

TABLE I: Device specification

manage traffic can exceed TCAM capacity. In this case, it is
possible to store rules in the RAM table. This diversity within
the same device provides efficient resource utilization, albeit
it is more difficult to predict performance since hybrid devices
inherit the benefits and drawbacks of both TCAM and RAM.

B. Evaluated Devices

Below we define the set of switches considered, and then
explain the differences and specific aspects of each design.

We measured the control plane latency of different switch
designs when updating its flow tables: (i) TCAM (hardware
switch with TCAM memory); (ii) RAM (software switch with
RAM memory); (iii) HTCAM (hybrid hardware switch using
only TCAM); and (iv) HRAM (hybrid hardware switch using
only RAM exact-match tables). All switches were evaluated
using OpenFlow 1.3. Due to a limitation of the hybrid device,
it was not possible to evaluate the operational mode combining
TCAM and RAM tables simultaneously. Table I presents
information about the devices. Note that we do not claim that
our results are exact for each switch design; our contribution
lies in showing significant performance variability among
architectures.

One of the designs we evaluate is a pure TCAM switch
(i.e., we measure memory performance). The TCAM device
has a single core processor, and an individual hardware table
implemented using TCAM memory. This configuration for-
wards all packets which match with entries installed in the
table at maximum speed. In order to evaluate the impact of
the TCAM table, we disable all virtual tables in this switch
during the experiments, that is, the switch does not store
any tables in RAM. These software tables are implemented
by vendors in some devices to increase the overall available
table size. However, its poor performance directly affects flow
configuration times.

In order to evaluate the RAM device, we use an instance of
the Open vSwitch 2.5.4 LTS on a multi-core processor host, as
it is the most accepted alternative. It is designed to be general
purpose, working in commodity hardware. To achieve high
performance using generic components, OVS makes use of
extensive rule caching, keeping tables both in kernel and user
space of the operating system [16].

The OpenFlow tables are stored in user space and serve to
populate the cache tables placed in kernel space. The kernel
tables are responsible for forwarding packets at high speed,
avoiding the need to process all flows in user space. The signif-
icant disadvantage of this strategy is the requirement of cache
revalidation whenever an OpenFlow table is modified. If cache
verification is not performed, changes in user space tables are
not reflected in kernel tables and lead to an inconsistent state

of network policies. Depending on the rate of updates, the
process of scanning and altering the cache may be complicated
and may directly affect flow configuration time.

The HTCAM/HRAM device also has single core processor
and allows the use of reconfigurable match tables offering
different modes. Each profile holds a different table size
according to the generality of entries, including tables for
wildcard rules in TCAM, exact-match rules on hash tables
in RAM or even modes designed for specific applications
scenarios, such as NAT and IPv6 traffic. However, it is not
possible to combine two or more modes simultaneously. This
limitation means that we cannot take advantage of multiple
profiles concurrently. In our evaluation, we analyze two modes
of reconfigurable tables: single table using TCAM and a single
exact-match hash table using RAM. These alternatives were
chosen because they represent the extreme sides (more generic
modes) of the hybrid switch. Moreover, by choosing these
two modes, it is possible to compare the performance of two
distinct memories and match-action structures, evaluating the
benefits and drawbacks of each implementation.

IV. METHODOLOGY

We describe below the methodology used in the experi-
ments. In order to accurately measure flow table update latency
of different switches, we require a precise and synchronized
environment (Section IV-A). We also need a strict setup for
our experiments, considering the set of flows, workload and
metrics (Section IV-B).

A. Evaluation Environment

The environment has four components: a network con-
troller; a packet generator, which transmits traffic to the
switch; the switch under evaluation; and a receiver, which
receives the packets forwarded by the switch.

The topology, shown in Figure 1, is simple enough, enabling
accurate experiments. Since we use information from both the
controller and the receiver in the latency measurement, we run
these two components along with the traffic generator on the
same host to avoid the problem of fine-grained synchronization
of clocks. We monitor the load on the host to ensure that there
were neither resource containment nor interference between
the three modules. The host is physically connected to the
switch using three 1 Gbps interfaces. The network controller
connects to the switch control port via interface eth0, send-
ing control plane requests (flow_mod) to insert/modify/delete
entries in the switch flow table.

The traffic generator uses eth1 interface to send packets
and the receiver uses eth2 to receive them. Both interfaces
(eth1 and eth2) are connected to data ports in the switch.
In the evaluation of the RAM device, the physical switch was
replaced by a host with OVS. This host runs only an Open
vSwitch instance and has three Gigabit interfaces to emulate
switch data and control ports. We highlight that OVS is not
running in a virtualized or emulated scenario, but on top of
Linux with its kernel module enabled.

Channel control

eth0

eth2

OpenFlow
 switch

eth1

Packets IN

Packets OUT

Fig. 1: Topology.

B. General Experimental Setup

Next, we describe the setup common to all experiments,
such as rule match type, workload and metrics. We postpone
the specifics of each experiment configuration until Section V,
along with results, to improve readability.

Match type. Given the characteristics and limitations of
each device, we considered two distinct sets of flow entries.
The first is identified by having rules with exact-match. That is,
all match fields must be filled with some value (no wildcards
allowed): IP src/dst, src/dst port number, ToS, switch input
port, EtherType and transport protocol. Since rules are exact,
no more than one entry can match with a rule, and priorities
are not needed. Usually, exact-match rules are stored in RAM
(e.g., using hash tables and prefix trees) given that RAM
memory is cheaper and allows for larger tables [17].

The second set contains rules with most match fields
wildcarded. We use rules with exact values only in the IP
src/dst and EtherType fields, as it is not possible to install
rules with all fields wildcarded or with equal matches. For
example, installing several rules with in_port specified with
the same value and all other header fields wildcarded would
implicate in the installation of a single rule in the flow table
by the OpenFlow, as all rules would be equal. In this case,
the use of priorities is strictly necessary because different
entries may match with the same rule. This scenario is used to
analyze three switch architectures: TCAM, HTCAM and RAM.
We could not evaluate the HRAM design using this set of rules
because its flow table is implemented as a hash table in RAM,
only allowing the installation of rules with exact-match fields.
Moreover, the table has support for a single priority, which
makes it impossible to evaluate the scenarios with varying
priorities.

Workload. It is divided into two parts: control plane and
data plane. The former is responsible for modifying the
flow table, and the latter, to detect the moment when the
changes are actually performed in the device. The control
plane load consists in a burst of flow_mod requests issued
by the controller to install/modify/delete rules on the table.
We employ bursts with sizes varying between 50 and 1950
requests, with the smallest table among all devices being at
least as large as 2000 entries (Table I). By using this burst
length, we guarantee that no switch flow table gets overflown.

The data plane workload, in turn, consists of a single flow
starting from interface eth1 of the host, passing through the
switch and returning to the host via interface eth2. This flow

is activated before the dispatch of the evaluated flow_mod burst
and remains active until all table updates are completed. The
packets of the flow match the most recent installed/modified
rule. This entry does not necessarily have the higher priority
among the other rules in the table. By using this workload,
the number of control messages issued by the controller is
reduced, which prevents overloading both the data and control
planes of the switch.

The traffic generator sends UDP messages with constant
inter-arrival time (' 10 µs) on eth1 at a rate of 50 Mbps.
The low throughput is intentional, since we aim at isolating
the time taken by the switch to process updates in the flow
tables (we do not evaluate the capacity/performance of the
switch data plane, i.e., its forwarding rate). Like previous
work, we confirm that the flow table was updated via data
plane: a packet analyzer examines interface eth2 of the host.
This strategy is necessary to avoid inaccurate results [18], [9].
The packet analyzer has a microsecond precision; we confirm,
via additional measurements, that it does not introduce any
overhead to the measurements.

Metric. The metric we focus on is flow table update latency,
similarly to [11], [10]. However, those papers include in the
metric definition the transmission and propagation delays. We
believe the update time should be based only on the time to
modify the table in the device itself. For this purpose, we first
measured the RTT between the network controller and switch
(' 0.2 ms) and, assuming it is nearly constant, we subtracted
the value (RTT) proportional to the number of flow_mods
emitted by the controller from the final results (e.g., ' 400 ms
when sending 1950 requests).

The plots in the next section show the combined time to
execute a burst of rule insertion/modification/deletion oper-
ations. The x-axis always represents the burst size, that is,
the number of operations being processed, while the y-axis
represents the time necessary to perform all operations. We
execute at least five redundant repetitions for each burst size,
varying the x-axis in steps of 50 and show all points instead of
the median. More specifically, when latency variability among
repetitions was negligible, we executed only five repetitions (as
more repetitions would yield the same results). When results
showed high variability or unusual behaviors, we performed a
higher number of repetitions and highlighted the details in the
description. The source code of our experiments is available
online 2.

V. EVALUATION

In this section, we detail the experiments and analyze
the results. They are organized according to the three table
update operations evaluated: rule insertion (Section V-A),
modification (Section V-B) and deletion (Section V-C).

A. Insertion

To evaluate insertion, we investigate two factors that in-
tuitively influence the time needed to install rules in the

2https://github.com/fmmazz/SDN-table-update

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being installed

RAM
TCAM

HTCAM
HRAM

(a) Exact match entries

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being installed

RAM
TCAM

HTCAM

(b) Wildcard Equal priority

 0

 500

 1000

 1500

 2000

 2500

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being installed

RAM
TCAM

HTCAM

(c) Wildcard Incr. priority

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being installed

RAM
TCAM

HTCAM

(d) Wildcard Decr. priority

 0

 1000

 2000

 3000

 4000

 5000

 6000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being installed

RAM
TCAM

HTCAM

(e) Wildcard Random priority

 1

 10

 100

 1000

 10000

 100000

 1×10
6

 1×10
7

 1×10
8

 500 1000 1500

L
at

en
cy

 (
m

s)

Number of rules being installed

RAM
TCAM

HTCAM

(f) Priority intercalation

Fig. 2: Rule insertion.

flow tables: match type (exact or wildcarded) and priority
choices. We understand that match type affects processing
cost and, consequently, switch performance when inserting
rules. The conclusions are obtained by comparing the plots
of exact match and variations of wildcard match. The priority
of the rule being installed (relative to other entries in the
table), in turn, may result in the displacement of previously
installed rules, which directly influences device performance
when setting up new flows.

We describe the methodology used for rule insertion as
follows. First, the device flow table is emptied. Then, we install
a low priority rule that works as a table miss entry. That is,
this rule matches any packet and has the action to drop all
matching traffic; its role is to discard packets that do not match
any entry in the table. Then, we install a burst of R rules
with sequential IP dst. The action of these rules is to forward
matching packets to the host. The insertion latency is defined
as Td - Tc, where Tc is the emission of the first flow_mod
request of the installation burst and Td the first packet observed
via data plane in the host interface.

We use the set of rules with exact-match to understand
the influence of the match type in rule insertion for all four
architectures. All rules have the same priority. Figure 2a
presents the results. In summary, we verify that (i) the RAM
switch shows the best performance among all devices for rule
insertion; (ii) there is a significant disparity of performance
between devices with similar match-action structures (for
example, HRAM and RAM switches); (iii) there is a notable
contrast in rule insertion latency within the hybrid switch,
depending on the mode (HRAM or HTCAM); and (iv) flow
table update latency grows linearly according to the number
of rules being installed. Next, we detail each finding.

The lowest latency for rule insertion was observed in

the RAM switch. We explain these results by the extensive
use of rule caching and the high number of optimizations
implemented in the latest versions of OVS [16]. Even though
not all rules are matched and installed in the fast path, the
software switch still has to process and update all requests in
the slow path. The use of multiple threads combined with batch
processing of control plane requests that arrive together take
advantage of multi-core processors to balance the load and to
decrease the number of accesses to the memory. We verified
through additional experiments that the RAM switch keeps the
optimal performance even when installing a burst of 50K rules.
Note that, because most traditional switches have specific
processors with a single core, some OVS optimizations may
not be used. Moreover, we explain the significant difference
in insertion latency for switches with similar characteristics
(HRAM and RAM) because of the difference in computational
power.

The second finding to highlight in Figure 2a is the difference
in rule insertion latency for the hybrid switch (comparing
HRAM and HTCAM). Intuitively, HRAM (which has match-
action structure and memory similar to RAM) would have a
better performance when comparing to HTCAM. Surprisingly,
we observe that HRAM has higher cost than HTCAM for all
burst sizes (more than 500 ms for a burst size equal or greater
than 750). When investigating the causes, we discovered the
following: throughout the installation of the rule burst, the
HRAM device processed only a few flow_mods for a short
period of time, queuing subsequent ones. We understand that
the reason for this behavior is the non-optimized implemen-
tation of hash tables, which needs to be continuously resized,
introducing an additional overhead to flow table update.

Rule priority. In the second set of experiments, we seek
to evaluate the impact of rule priority in the insertion latency.

We used the set of rules with some wildcarded fields and four
priority patterns: equal, increasing, decreasing and random.
The first one installs a burst of rules with equal priority,
as indicated by its name. The increasing/decreasing patterns
employ a burst of rules with unique priorities, following the
order of their respective pattern. The last one (random) installs
a burst of rules with non-exclusive priorities, varying from 1k
to 15k. This interval was chosen to (i) reduce the chance that
several rules end up with the same priority; and (ii) allow
the representation of a more realistic scenario, in which the
installed rules do not follow a predetermined order (such as
increasing or decreasing).

Figures 2b, 2c, 2d and 2e present the results for the different
priority patterns. Recall that the evaluation in this case is re-
stricted to the three architectures that allow the use of varying
priorities. In summary, we observe that (i) rule insertion with
random priority (Figure 2e) shows higher latencies than other
patterns (note that the y-axis in the plot is wider) and higher
variability; (ii) the decreasing pattern (Figure 2d) exhibited
higher latency than increasing priority (Figure 2c); and (iii)
the insertion latency grows linearly according to the number of
rules being installed for all devices, regardless of the priority
pattern. Next, we detail each of these findings.

Rule insertion with random priority (Figure 2e) presented
higher latencies when compared to other patterns, in contrast
the results found by Lazaris et al. [11]. For this experiment,
we performed 20 redundant rounds for each device. We
believe the results obtained in that study are not correct due
to the simplistic methodology adopted by the authors. We
also observe high variability in the results for the HTCAM
and TCAM devices. When investigating3, we detected that
the increased latency and variability are associated to the
randomness in the priority of the rules being installed (between
1k and 15k). This variation creates a significant overhead to
the process of search, reordering and installation of rules in
the flow table: reordering can lead to the displacement of a
considerable number of entries for each new rule installation.

The insertion with increasing priorities (Figure 2c) results in
lower latencies when compared to the decreasing pattern (Fig-
ure 2d), in line with a similar experiment in Lazaris et al. [11].
When comparing the plots, we verify that the performance of
HTCAM and TCAM falls considerably when installing rules
with decreasing priority. Latency for the decreasing pattern
increases substantially compared to the increasing priority: for
a burst of 1950 requests, around 1500 ms for HTCAM and
700 ms for TCAM. The results from the equal priority scenario
(Figure 2b) are similar to the decreasing pattern (Figure 2d).
We note that insertions are slower because rules may need
to be shifted on the table. We conclude that the memory
employed in these devices may not be prepared to install
rules with a decreasing priority pattern. In contrast, we notice
that latency for the RAM device is not affected. This happens
because the switch implements its flow tables as hash tables

3We discussed this fact with the switch vendor engineers, but we cannot
make the discussions publicly available due to the signature of a non-
disclosure agreement.

(which do not order entries by priority), so their rules do not
need to be shifted and, consequently, their performance is not
influenced.

Priority intercalation. To better understand the effect of
priorities and table occupation in rule insertion latency, we
performed a third set of experiments. In this case, the rules to
be inserted have different priorities in comparison to the rules
already installed in the flow tables (again, recall that the use
of priorities limits the comparison among three architectures).

In this set, we performed two experiments. Next, we de-
scribe the methodology used in the first one. Initially, the
switch flow table is emptied, and 500 rules are installed with
a ‘low’ priority of 1,000. Then, the switch receives a burst of
R installation requests, containing rules with ‘high’ priority
(32,000). We evaluated the time to install all rules considering
bursts of 50 to 1450 requests. These burst lengths were chosen
considering the size of the smallest switch table (Table I). The
action associated with these rules is to forward traffic to the
host. The second experiment is the same but with inverted
priorities: rules with low priority are installed in a table already
populated with high priority entries.

Figure 2f presents the results for the first experiment, using
logarithmic scale for the y-axis and linear scale for the x-axis.
We observe that the difference in flow table update latency
between devices is at least one order of magnitude and can
reach up to three orders with a burst of 1,000 requests (HTCAM
and RAM). The latency for the HTCAM exceeds 10 seconds
even with a short burst (150 insertions). The explanation for
the high latencies is the excessive overhead to process, reorder
and install the updates in flow tables at line rate. We perceive
that memory management in these devices is unable to deal
appropriately with priority diversity and, consequently, these
devices are incapable of installing rules efficiently.

The results of the second experiment with priority interca-
lation are very similar to rule insertion with increasing priority
(Figure 2c) and therefore, omitted. Table update latency grows
linearly according to the number of rules being inserted. The
values for TCAM and HTCAM show that the devices tend to
install low priority rules in the last address of memory, in line
with a similar experiments in He et al. [8]. This ordering is
used to avoid rule displacement when inserting low priority
rules in a table populated with high priority entries. Once
again, it is possible to observe that the RAM device is not
influenced by different priorities.

Implications. The results show how limited knowledge
of the switch operation (considering different architectures)
can impact overall network performance. Understanding how
switches perform with different configurations (e.g., rule pri-
ority and match type) is essential to avoid the use of an inef-
fective and, perhaps, incorrect network control plane. In real
SDN networks (where a controller manages several switches),
installing a burst of rules in all these devices with a poorly
configured control plane may considerably increase flow setup
time, negatively impacting the performance of time-sensitive
applications and the state of the entire network. In general, our
results help identifying potential inefficiencies, which should

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being modified

RAM
TCAM

HTCAM
HRAM

(a) Exact match - Non-strict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being modified

RAM
TCAM

HTCAM
HRAM

(b) Exact match - Strict

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number or rules being modified

RAM
TCAM

HTCAM

(c) Equal priority - Non-strict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being modified

RAM
TCAM

HTCAM

(d) Equal priority - Strict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being modified

RAM
TCAM

HTCAM

(e) Incr. priority - Strict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being modified

RAM
TCAM

HTCAM

(f) Decr. priority - Strict

Fig. 3: Rule modification.

be avoided to ensure efficient network performance.

B. Modification

Similarly to the insertion, we first use the set of exact-match
rules and fixed priority to evaluate the modification for the four
designs. Then, we evaluate three architectures considering the
impact of different rule priorities.

Unlike previous studies, we consider the impact of the
OpenFlow parameter strict. As the name implies, it forces the
match of entries to be ‘strict’ or exact, considering the priority
and all fields of the flow_mod match. Thus, when strict is
used, at most one entry is modified by a request (if not used,
multiple entries may be modified with a single request).

Next, we describe the methodology used in the modification
experiments. First, the switch flow table is emptied and, then,
R initial rules are installed. The action associated with these
rules is to forward traffic to an unused port of the switch, which
will drop all matching packets. Later, a burst of R modification
requests is sent to the switch, altering the initial rules actions to
forward traffic to the switch output port connected to the host.
The modification latency is defined as Td - Tc, where Tc is
the emission of the first flow_mod request of the modification
burst and Td is the first packet observed via data plane in the
host interface.

The first experiment is based on exact-match and fixed
priority. Figures 3a and 3b present the results for the four
architectures (with and without the parameter strict). In sum-
mary, we observe that (i) the use of the strict provides a
significant decrease in the table update latency (note that the y-
axis is very different), reaching 15x for the HRAM device and
up to 11x for the HTCAM switch; (ii) when not using strict,
latency grows exponentially according to the number of rules

being modified for the TCAM, HTCAM and HRAM devices, but
linearly for the RAM one. Next, we detail the results.

When comparing the plots of Figures 3a and 3b, it is evident
the impact of the strict parameter (note the y-axis). The reason
for this difference is explained as follows. Without the strict, a
modification request demands a complete search in the entire
table, because multiple entries may match with the information
contained in the flow_mod. Even for hash table match-action
structures (HRAM and RAM), there is a complete lookup on
the table. The huge disparity of latency between these two
devices is due to the difference of computational power, in
line with what was discussed previously. The use of a single
core processor directly influences the cost of a complete table
search. In contrast, with strict, the operation is terminated as
soon as a (strict) match occurs, which considerably decreases
table update latency.

Rule priority. We used a set of experiments to evaluate
the performance of modification operation when rules have
different priorities (and wildcard masks). We considered three
different priority patterns: equal, increasing and decreasing.
Within an experiment, we use the same pattern and rule
priority both to install the initial rules in the table and for
the burst of modification requests issued by the controller, as
our goal is to modify the same rules that are already installed
in the device.

Figures 3c, 3d, 3e, 3f show the results. In summary, we
observe that (i) the strict parameter has the largest impact
when modifying rules with distinct priorities; (ii) the prior-
ity pattern does not affect the time to process modification
requests; and (iii) rule match type does not influence rule
modification latency.

The RAM switch showed a linear growth according to the
number of rules being modified, independently of the priority

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being removed

RAM
TCAM

HTCAM
HRAM

(a) Exact Match - Non-strict

 0

 500

 1000

 1500

 2000

 2500

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being removed

RAM
TCAM

HTCAM
HRAM

(b) Exact Match - Strict

 0

 1000

 2000

 3000

 4000

 5000

 6000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being removed

RAM
TCAM

HTCAM

(c) Equal priority - Non-strict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being removed

RAM
TCAM

HTCAM

(d) Equal priority - Strict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being removed

RAM
TCAM

HTCAM

(e) Incr. priority - Strict

 0

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Number of rules being removed

RAM
TCAM

HTCAM

(f) Decr. priority - Strict

Fig. 4: Rule deletion.

pattern and strict usage. In HTCAM and TCAM devices, the
absence of the parameter implies an exponential growth of
the latency, according to the number of rules being modified.
In contrast, with the parameter, latency increases linearly
according to the number of rules being modified.

We notice that rule modification is not affected by the
priority pattern or match type. The experiments show that,
for any variation of these factors, the results remain similar
and present identical behavior. He et al. [8] indicate that rule
modification is not affected by rule priority. However, the
results of that study fail to consider the strict parameter. When
it is off, rule priority is never examined and, evidently, the
results will be the equivalent for any priority pattern used.

Implications. The results show the importance of an ac-
curate configuration of the network control plane. The right
understanding of the switch architectures, combined with the
use of OpenFlow parameters, can substantially impact overall
network performance. Improper usage of parameters may sig-
nificantly influence flow setup time and hinder the application
of network policies. Our results improve the understanding of
control plane configuration and benefit network operators.

C. Deletion

In line with insertion and modification, we first use exact-
match and fixed priority rules to measure the deletion op-
eration for all four architectures. Next, we evaluate deletion
in three architectures (RAM, TCAM and HTCAM) considering
the impact of different rule priorities with and without the
OpenFlow strict parameter. Unlike previous work, we evaluate
the influence of the strict parameter and match type in rule
deletion latency, as well as analyze the performance of entry
deletion in a RAM switch.

We describe the methodology used for the first set of exper-
iments (with deletion using exact-match and fixed priority) as
follows. First, the switch flow table is emptied, and R initial
rules are inserted. The action associated with these rules is to
forward traffic to the host. Then, a burst of R deletion requests
is sent to the switch. The deletion latency is defined as Td - Tc,
where Tc is the emission of the first flow_mod of the deletion
burst and Td the last packet observed via data plane in the host
interface. This methodology was adopted considering the rule
priority limitation of the HRAM device, which prevents the
installation of a low priority rule responsible for processing
packets that do not match any entry in the table.

Figures 4a and 4b show the results. In summary, we observe
that (i) the strict parameter is the aspect with the greatest
impact on rule deletion delay, causing a decrease in latency of
2x for TCAM and up to 5x for HRAM and HTCAM (Figure 4b);
and (ii) latency increases linearly according to the number of
rules being removed in the TCAM, HTCAM and HRAM devices.

Surprisingly, there was considerable variation in the results
of the RAM device. We investigated the issue and discussed
the possible causes in the OVS mailing list. We conclude
that the behavior is due to the architecture of OVS: a sub-
stantial number of threads is created to accomplish the task
of removing a large number of rules, increasing the degree
of concurrency among the threads responsible for obtaining
statistics and cache revalidation. This behavior was observed
even with 30 redundant repetitions.

Rule priority. In the second set of experiments, we used
the wildcard match rules and three distinct priority patterns:
equal, increasing and decreasing. We describe the method-
ology applied to rule deletion with varying priorities in the
following manner. First, the switch flow table is emptied. Next,
a low priority rule is installed, which matches with any packet

and has the action to forward traffic to the host. Then, R
initial rules are installed using one of the priority patterns,
with the associated action to drop matching traffic. The packet
generator is activated, and the traffic matches with the last
rule installed (which discards these packets). Later, a burst
of R deletion requests is issued by the controller using the
same pattern and rule priority of the initial rules, as we would
like to remove the already installed rules. It is possible to
observe the moment that the rules are removed from the table
because packets stop matching with the last installed rule and
start matching with the low priority rule. The deletion latency
is defined as Td - Tc, where Tc is the emission of the first
flow_mod request of the deletion burst and Td is the first packet
observed via data plane in the host interface.

Figures 4c, 4d, 4e and 4f present the results. Once again, it
is clear the importance of the strict parameter when comparing
the plot of Figures 4c and 4d (note the differences in the y-axis
scale). Regardless of the priority pattern used to remove rules
and match type, the behavior for TCAM and HTCAM devices
was quite similar, increasing the latency linearly according to
the number of rules being removed. We also noticed that, for
these devices, exact-match and wildcard masks do not affect
the table update latency. Besides, we found that removing rules
with decreasing priority in these switches takes longer when
compared to the other two patterns (equal and increasing),
even with strict. We conclude that this behavior is due to
the displacement of rules in TCAM tables. As previously
mentioned, we verified that the TCAM memory of the devices
may not be prepared to search for rules with a decreasing
priority pattern.

Regarding the RAM device, we observe a very unusual
bimodal behavior in all priority patterns despite the use of
strict (note what appears to be two curves for the RAM device
in Figures 4c, 4d, 4e and 4f). This behavior was observed
even with 60 redundant repetitions. We contacted the OVS
developers and discussed these results. The conclusion is that
the variability is due to the process of cache revalidation
performed by the switch. Whenever the OpenFlow tables are
modified, OVS needs to iterate over all entries in cache tables
(kernel space) to check if they need to update their actions
or they remain correct. To perform an optimized execution,
OVS batches successive flow_mod requests to execute several
operations at once. Besides, it delays cache revalidation briefly
when two table changes occur in rapid succession, thus gen-
erating the bimodal behavior. In contrast, rule deletion with
wildcard masks did not show the high variability presented in
exact-match (comparing Figures 4a and 4b with Figures 4c,
4d, 4e and 4f). This can be explained by the substantial load
reduction of the switch when it discards all packets, instead
of forwarding them through an output port.

Implications. These results show unusual behaviors pre-
viously unknown in the literature for RAM switches. Again
we show the relevance of understanding switch operation
(how each architecture behaves when dealing with control
plane requests) and its parameters. Our findings show sce-
narios that could be critical to networks that depend on

RAM switches, as rule deletion presents high latencies with
significant variability. In general, these behaviors may directly
affect overall application and network performance. Also, our
findings may contribute to improvements in OVS to be made
by the community.

VI. FINAL REMARKS

In this paper, we performed a comprehensive measurement
of switch table update latency, comparing four SDN-enabled
forwarding device designs. The main contributions of this
paper are as follows. First, we evaluate a broader set of switch
architectures (TCAM-only, RAM-only and hybrid TCAM and
RAM) than related work and we are also the first work to
identify and measure the influence of OpenFlow parameters
in flow table update latency. Second, we define a robust
methodology, which considers a range of evaluation scenarios
and factors. Third, results indicate that (i) latency disparity
between devices can scale up to three orders of magnitude
for rule insertion; (ii) OpenFlow parameters inflate flow setup
time up to 10x and 6x for rule modification and deletion,
respectively; and (iii) OVS has unusual behaviors (and high
variability) for rule deletion. We believe that our findings
highlight the importance of understanding the operation of
switches with different architectures and the need for an
accurate configuration of the control plane to obtain the best
performance of SDN networks.

As future work, we intend to (i) explore new switch archi-
tectures (e.g., with programmable data planes); (ii) investigate
switch performance using real network workloads; and (iii)
measure the performance of both control plane operations
(flow_mod) and data plane requests (table lookups).

ACKNOWLEDGEMENTS

This work has been supported by Project Phoenix
(MCTI/CNPq/Universal 460322/2014-1) and Project P4Sec
(RNP-NSF Cybersecurity).

REFERENCES

[1] N. McKeown et al., “Openflow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[2] A. Roy et al., “Inside the social network’s (datacenter) network,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 123–137, Aug.
2015.

[3] T. Benson et al., “Network traffic characteristics of data centers in
the wild,” in Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, ser. IMC ’10. New York, NY, USA: ACM,
2010, pp. 267–280.

[4] M. Alizadeh et al., “Data center tcp (dctcp),” in Proceedings of the
ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10. New York,
NY, USA: ACM, 2010, pp. 63–74.

[5] K. Jang et al., “Silo: Predictable message latency in the cloud,” in
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
ACM, 2015, pp. 435–448.

[6] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14). Seattle, WA: USENIX Association, 2014, pp.
203–216.

[7] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95,
Jul. 2014.

[8] K. He et al., “Measuring control plane latency in sdn-enabled switches,”
in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15, Santa Clara, California, USA,
June 17-18, 2015, 2015, pp. 25:1–25:6.

[9] M. Kuźniar et al., What You Need to Know About SDN Flow Tables.
Cham: Springer International Publishing, 2015, pp. 347–359.

[10] C. Sieber et al., “How fast can you reconfigure your partially deployed
SDN network?” in Networking. IEEE, 2017, pp. 1–9.

[11] A. Lazaris et al., “Tango: Simplifying sdn control with automatic switch
property inference, abstraction, and optimization,” in Proceedings of
the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’14. New York, NY,
USA: ACM, 2014, pp. 199–212.

[12] H. Chen and T. Benson, “The case for making tight control plane latency
guarantees in sdn switches,” in Symposium on SDN Research, ser. SOSR
’17. New York, NY, USA: ACM, 2017, pp. 150–156.

[13] D. Y. Huang et al., “High-fidelity switch models for software-defined
network emulation,” in Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’13. New York, NY, USA: ACM, 2013, pp. 43–48.

[14] G. J. Narlikar et al., “Coolcams: Power-efficient tcams for forwarding
engines,” in Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies, San
Franciso, CA, USA, March 30 - April 3, 2003, 2003, pp. 42–52.

[15] M. Honda et al., “mswitch: A highly-scalable, modular software switch,”
in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, ser. SOSR ’15. New York, NY, USA:
ACM, 2015, pp. 1:1–1:13.

[16] B. Pfaff et al., “The design and implementation of open vswitch,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). Oakland, CA: USENIX Association, 2015, pp. 117–130.

[17] C. Yu et al., “Characterizing rule compression mechanisms in software-
defined networks,” in International Conference on Passive and Active
Network Measurement. Springer, 2016, pp. 302–315.

[18] C. Rotsos et al., “Oflops: An open framework for openflow switch
evaluation,” in Proceedings of the 13th International Conference on

Passive and Active Measurement, ser. PAM’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 85–95.

