
Computer Networks 127 (2017) 109–125

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Achieving minimum bandwidth guarantees and work-conservation

in large-scale, SDN-based datacenter networks

Daniel S. Marcon

a , b , ∗, Fabrício M. Mazzola

b , Marinho P. Barcellos b

a University of Vale do Rio dos Sinos (UNISINOS), RS, Brazil
b Federal University of Rio Grande do Sul (UFRGS), RS, Brazil

a r t i c l e i n f o

Article history:

Received 31 January 2017

Revised 8 July 2017

Accepted 14 August 2017

Available online 16 August 2017

Keywords:

Datacenter networks

Software-Defined Networking

Network sharing

Performance interference

Bandwidth guarantees

Work-conservation

a b s t r a c t

Performance interference has been a well-known problem in datacenters and one that remains a constant

topic of discussion in the literature. Software-Defined Networking (SDN) may enable the development of

a robust solution for interference, as it allows dynamic control over resources through programmable in-

terfaces and flow-based management. However, to date, the scalability of existing SDN-based approaches

is limited, because of the number of entries required in flow tables and delays introduced. In this paper,

we propose Predictor, a scheme to scalably address performance interference in SDN-based datacenter

networks (DCNs), providing minimum bandwidth guarantees for applications and work-conservation for

providers. Two novel SDN-based algorithms are proposed to address performance interference. Scalability

is improved in Predictor as follows: first, it minimizes flow table size by controlling flows at application-

level ; second, it reduces flow setup time by proactively installing rules in switches. We conducted an

extensive evaluation, in which we verify that Predictor provides (i) guaranteed and predictable network

performance for applications and their tenants; (ii) work-conserving sharing for providers; and (iii) sig-

nificant improvements over DevoFlow (the state-of-the-art SDN-based proposal for DCNs), reducing flow

table size (up to 94%) and having similar controller load and flow setup time.

© 2017 Elsevier B.V. All rights reserved.

1

b

w

m

T

i

b

p

l

i

p

a

a

w

o

a

c

i

s

t

d

o

t

D

(

w

e

t

a

t

t

d

v

r

w

h

1

. Introduction

Cloud providers lack practical and efficient mechanisms to offer

andwidth guarantees for applications [1–4] . The datacenter net-

ork (DCN) is typically oversubscribed and shared in a best-effort

anner, relying on TCP to achieve high utilization and scalability.

CP, nonetheless, does not provide robust isolation among flows

n the network [5–8] ; in fact, long-lived flows with a large num-

er of packets are privileged over small ones [9] , a problem called

erformance interference [10–12] . The problem is a long-term chal-

enge, and previous work on the field [1–3,11,13–16] has allowed

mportant advances. In this context, we study how to address the

roblem in large-scale, SDN-based datacenter networks (DCNs). We

im at achieving minimum bandwidth guarantees for applications

nd their tenants while maintaining high utilization (i.e., providing

ork-conserving capabilities) in large DCNs.

Software-Defined Networking (SDN) [17] may enable the devel-

pment of a robust solution to deal with performance interference,

s it allows dynamic control over resources through programmable
∗ Corresponding author.

E-mail addresses: daniel.stefani@inf.ufrgs.br , daniel.stefani@gmail.com (D.S. Mar-

on), fmmazzola@inf.ufrgs.br (F.M. Mazzola), marinho@inf.ufrgs.br (M.P. Barcellos).

o

b

ttp://dx.doi.org/10.1016/j.comnet.2017.08.008

389-1286/© 2017 Elsevier B.V. All rights reserved.
nterfaces and flow-based management [18] . However, to date, the

calability of existing SDN-based approaches is limited, because of

he number of entries required in flow tables and delays intro-

uced (mostly related to flow setup time) [18–20] . The number

f entries required in flow tables can be significantly higher than

he amount of resources available in commodity switches used in

CNs [19,21] , as such networks typically have very large flow rates

e.g., over 16 million/s [22]). Flow setup time, in turn, is associated

ith the transition between the data and control planes when-

ver a new flow arrives at a switch

1 (latency for communica-

ion between switches and the controller), and the high frequency

t which flows arrive and demands change in DCNs restricts con-

roller scalability [23] . As a result, the lack of scalability hinders

he use of SDN to address interference in large DCNs.

The scalability of SDN-based datacenters could be improved by

evolving the control to the data plane, such as proposed by De-

oFlow [19] and Difane [24] , but deployability is limited since they

equire switches with customized hardware. Another approach

ould be using a logically distributed controller, such as proposed
1 We use the terms “switches” and “forwarding devices” to refer to the same set

f SDN-enabled network devices, that is, data plane devices that forward packets

ased on a set of flow rules.

http://dx.doi.org/10.1016/j.comnet.2017.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.08.008&domain=pdf
mailto:daniel.stefani@inf.ufrgs.br
mailto:daniel.stefani@gmail.com
mailto:fmmazzola@inf.ufrgs.br
mailto:marinho@inf.ufrgs.br
http://dx.doi.org/10.1016/j.comnet.2017.08.008

110 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

t

t

i

s

b

o

m

d

c

m

l

p

i

m

t

t

c

b

a

p

d

r

a

g

i

a

A

t

c

w

f

a

s

a

i

fl

p

g

S

c

i

S

g

s

a

S

f

2

i

a

i

S

w

t

m
by Kandoo [25] . However, it does not scale for large DCNs where

communications occur between virtual machines (VMs) connected

by different top-of-rack (ToR) switches. This happens because the

distributed set of controllers needs to maintain synchronized infor-

mation (strong consistency) for the whole network. This is neces-

sary in order to route traffic through less congested paths and to

reserve resources for applications.

We rely on two key observations to address performance inter-

ference and scalability of SDN in DCNs: (i) providers do not need

to control each flow individually, since they charge tenants based

on the amount of resources consumed by applications 2 ; and (ii)

congestion control in the network is expected to be proportional to

the tenant’s payment (defined in their Service Level Agreements –

SLAs) [12,13] . Therefore, we adopt a broader definition of flow, con-

sidering it at application-level, 3 and introduce Predictor, a scheme

for large-scale datacenters. Predictor deals with the two aforemen-

tioned challenges (namely, performance interference and scalabil-

ity of SDN/OpenFlow in DCNs) in the following manner.

Performance interference is addressed by employing two SDN-

based algorithms (described in Section 5.3) to dynamically pro-

gram the network, improving resource sharing. By doing so, both

tenants and providers have benefits. Tenants achieve predictable

network performance by receiving minimum bandwidth guaran-

tees for their applications (using Algorithm 1). Providers, in turn,

maintain high network utilization (due to work-conservation pro-

vided by Algorithm 2), essential to achieve economies of scale.

Scalability is improved in two ways. First, as we show through

measurements (Section 3), reducing flow table size also decreases

the time taken to install rules in flow tables (stored in Ternary

Content-Addressable Memory – TCAM) of switches. In the pro-

posed approach, flow table size is minimized by managing flows

at application-level and by using wildcards (when possible). This

setting allows providers to control traffic and gather statistics at

application-level for each link and device in the network.

Second, we propose to proactively install rules for intra-

application communication, guaranteeing bandwidth between VMs

of the same application. By proactively installing rules at the

moment applications are allocated, flow setup time is reduced

(which is important especially for latency-sensitive flows). Inter-

application rules, in turn, may be either proactively installed in

switches (if tenants know other applications that their applica-

tions will communicate with [11] or if the provider employs some

predictive technique [26,27]) or reactively installed according to

demands. Proactively installing rules has both benefits and draw-

backs: while flow setup time is eliminated, some flow table entries

may take longer to expire (they might be removed only when their

respective applications conclude and are deallocated). Our decision

is motivated by the fact that intra-application traffic volume is ex-

pected to be the highest type of traffic [12] .

In general, Predictor’s strategy to address scalability of

SDN/OpenFlow in large-scale datacenters presents a trade-off. The

benefits are related to reducing flow table size and flow setup

time in datacenter networks. Reducing flow table size enables (i)

providers to use cheaper forwarding devices (i.e., with smaller flow

tables); and (ii) forwarding devices to install rules in a shorter

amount of time (as shown in Section 3.2). Reducing flow setup

time greatly benefits latency-sensitive applications. The drawbacks

are related to the time rules remain installed in forwarding de-

vices and the ability to perform fine-grained load balancing. First,

rules for intra-application communication (i.e., communication be-

tween VMs of the same application) are installed when applica-
2 Without loss of generality, we assume one application per tenant.
3 An application is represented by a set of VMs that consume computing and

network resources (see Section 5.1 for more details).

s

t

d

t

l
ions are allocated and are removed when applications conclude

heir execution and are deallocated. Hence, some rules may remain

nstalled longer than in other proposals. Second, since rules are in-

talled at application-level, the ability to perform fine-grained load

alancing in the network (e.g., for a flow or for a restricted set

f flows) may be reduced. Note that Predictor can also install and

anage rules at lower levels (for instance, by matching source and

estination MAC and IP fields), since it uses the OpenFlow proto-

ol. Nonetheless, given the amount of resources available in com-

odity switches and the number of active flows in the network,

ow-level rules need to be kept to a minimum.

Contributions. In comparison to our previous work [28] , in this

aper we present a substantially improved version of Predictor,

n terms of both efficiency and resource usage. We highlight five

ain contributions. First, we run experiments to motivate Predic-

or and show that the operation of inserting rules at the TCAM

akes more time and is more variable according to flow table oc-

upancy. Thereby, the lower the number of rules in TCAMs, the

etter. Second, we extend Predictor to proactively provide inter-

pplication communication guarantees (rather than only reactively

roviding it), which can further reduce flow setup time. Third, we

evelop improved versions of the allocation and work-conserving

ate enforcement algorithms to provide better utilization of avail-

ble resources (without adding significant complexity to the al-

orithms). More specifically, we improved (i) the allocation logic

n Algorithm 1 , so that resources can be better utilized without

dding significant complexity; and (ii) rate allocation for VMs in

lgorithm 2 , so that all bandwidth available can be utilized if

here are demands. In our previous paper [28] , there could be oc-

asions when some bandwidth would not be used even if there

ere demands. Fourth, we address the design of the control plane

or Predictor, as it is an essential part of SDN to provide efficient

nd dynamic control of resources. Fifth, we conduct a more exten-

ive evaluation, comparing Predictor with different modes of oper-

tion of DevoFlow [19] and considering several factors to analyze

ts benefits, overheads and technical feasibility. Predictor reduces

ow table size up to 94%, offers low average flow setup time and

resents low controller load, while providing minimum bandwidth

uarantees for tenants and work-conserving sharing for providers.

The remainder of this paper is organized as follows.

ection 2 discusses related work, and Section 3 examines the

hallenges of performance interference and scalability of SDN

n DCNs. Section 4 provides an overview of Predictor, while

ection 5 presents the details of the proposal (specifically re-

arding application requests, bandwidth guarantees, resource

haring and control plane design). Section 6 presents the evalu-

tion, and Section 7 discusses generality and limitations. Finally,

ection 8 concludes the paper with final remarks and perspectives

or future work.

. Related work

Researchers have proposed several schemes to address scalabil-

ty in large-scale, SDN-based DCNs and performance interference

mong applications. Proposals related to Predictor can be divided

nto three classes: OpenFlow controllers (related to scalability in

DN-based DCNs), and deterministic and non-deterministic band-

idth guarantees (related to performance interference).

OpenFlow controllers. DevoFlow [19] and DIFANE [24] propose

o devolve control to the data plane. The first one introduces new

echanisms to make routing decisions at forwarding devices for

mall flows and to detect large flows (to request controller assis-

ance to route them), while the second keeps all packets in the

ata plane. These schemes, however, require more complex, cus-

omized hardware at forwarding devices. Kandoo [25] provides a

ogically distributed control plane for large networks. Nonetheless,

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 111

i

l

c

(

d

r

q

i

a

f

p

c

b

t

t

[

a

t

(

d

r

q

t

a

s

t

w

p

i

t

l

n

b

r

f

d

c

t

l

d

m

v

p

b

l

N

w

w

o

u

m

a

a

d

fl

p

(

s

t

t

i

d

[

t

w

n

t

t

t

P

3

(

D

c

m

T

t

p

3

t

a

G

f

f

(

r

a

p

a

t

i

h

s

fl

p

n

w

p

S

a

a

d

t

t

s

t

u

p

l

t

r

t

p

g

t

m

t does not scale when most communications occur between VMs

ocated in different racks. It is so because the distributed set of

ontroller instances needs to maintain synchronized information

strong consistency) for the whole DCN. This is necessary in or-

er to route traffic through less congested paths and to reserve

esources for applications. Lastly, Hedera [29] and Mahout [30] re-

uire precise statistics from the network with at most 500 ms of

nterval between them to efficiently route large flows and utilize

vailable resources [31] . However, obtaining statistics with such

requency is impractical in large DCNs [19] . In contrast to these

roposals, Predictor requires neither customized hardware nor pre-

ise statistics from the network with at most 500 ms of interval

etween them. Furthermore, Predictor scales to the high dynamic

raffic patterns of DCNs, independently of the source and destina-

ion of communications.

Deterministic bandwidth guarantees. Silo [13] , CloudMirror

1] and Oktopus [32] provide strict bandwidth guarantees for ten-

nts by isolating applications in virtual networks. Unlike Predictor,

hese approaches (i) do not provide complete work-conservation

which may result in underutilization of resources); and (ii) ad-

ress only intra-application communication.

Proteus [26] , in contrast to Predictor, needs to profile tempo-

al network demands of applications before allocation, since it re-

uires such information for allocating applications in the infras-

ructure. Such requirement may be unrealistic for some types of

pplications (e.g., ones that consume an excessive amount of re-

ources or that have requirements which depend on external fac-

ors). EyeQ [33] attempts to provide bandwidth guarantees with

ork-conservation. However, different from Predictor, it cannot

rovide guarantees upon core-link congestion [34] (and congestion

s not rare in DCNs [8]). Finally, Hadrian [12] introduces a strategy

hat considers inter-application communication, but it (i) needs a

arger, custom packet header (hindering its deployment); (ii) does

ot ensure complete work-conservation, as the maximum allowed

andwidth is limited according to the tenant’s payment; and (iii)

equires switches to dynamically perform rate calculation (and en-

orce such rate) for each flow in the network. Unlike Hadrian, Pre-

ictor provides complete work-conservation and performs rate cal-

ulation at server hypervisors (freeing switches from this burden).

Li et al. [35] propose a model to ensure bandwidth guarantees,

o minimize network cost and to avoid congestion on low-cost

inks for inter-datacenter traffic. Since Predictor focuses on intra-

atacenter traffic, the proposal is mostly orthogonal to ours. As a

atter of fact, Predictor could be used inside datacenters to pro-

ide bandwidth guarantees with work-conservation while Li et al.’s

roposal could be employed on the set of inter-datacenter links

elonging to the path used for communications between VMs al-

ocated inside different datacenters.

Non-deterministic bandwidth guarantees. Seawall [10] and

etShare [36] share the network proportionally according to

eights assigned to VMs and tenants. Thus, they allocate band-

idth at flow- and link-level. FairCloud [37] explores the trade-

ff among network proportionality, minimum guarantees and high

tilization. These proposals, however, may result in substantial

anagement overhead (since bandwidth consumed by each flow

t each link is dynamically calculated according to the flow weight,

nd large DCNs can have millions of flows per second [22]). Pre-

ictor, in contrast, reduces management overhead by considering

ows at application-level.

Varys [3] , Baraat [2] and PIAS [14] seek to improve application

erformance by minimizing average and tail flow completion time

FCT). Karuna [15] minimizes FCT for non-deadline flows while en-

uring that deadline flows just meet their deadlines. Unlike Predic-

or, none of them provide minimum bandwidth guarantees.

QJUMP [11] explores the trade-off between throughput and la-

ency. While being able to provide low latency for selected flows,
t may significantly reduce network utilization (as opposed to Pre-

ictor, which can achieve high network utilization).

Finally, Active Window Management (AWM) [38] , AC/DC TCP

8] and vCC [7] address congestion control. Specifically, AWM seeks

o minimize network delay and to keep goodput close to the net-

ork capacity, while AC/DC TCP [8] and vCC [7] address unfair-

ess by performing congestion control at the virtual switch in

he hypervisor. Consequently, these three proposals are mostly or-

hogonal to Predictor, since a DCN needs both congestion con-

rol (e.g., AWM, AC/DC TCP or vCC) and bandwidth allocation (e.g.,

redictor).

. Motivation and research challenges

In this section, we review performance interference

 Section 3.1) and discuss the challenges of using SDN in large-scale

CNs to build a solution for interference (Section 3.2). In the

ontext of SDN, we adopt an OpenFlow [39] view, since it is the

ost accepted SDN implementation by Academia and Industry.

hrough OpenFlow switch measurements, we quantify flow setup

ime and show it can hinder scalability of SDN as a solution to the

erformance interference problem.

.1. Datacenter network sharing

Several recent measurement studies [11,13,32,40–43] concluded

hat, due to performance interference, the network throughput

chieved by VMs can vary by a factor of five or more. For instance,

rosvenor et al. [11] show that variability can worsen tail per-

ormance (the worst performance in a set of executions) by 50 ×
or clock synchronization (PTPd) and 85 × for key-value stores

Memcached). As the computation typically depends on the data

eceived from the network [26] and the network is agnostic to

pplication-level requirements [3] , such variability often results in

oor and unpredictable application performance [44] . In this situ-

tion, tenants end up spending more money.

Performance variability is usually associated with two factors:

ype of traffic and congestion control. The type of traffic in DCNs

s remarkably different from other networks [5] . Furthermore, the

eterogeneous set of applications generates flows that are sen-

itive to either latency or throughput [30] ; throughput-intensive

ows are larger, creating contention in some links, which results in

ackets from latency-sensitive flows being discarded (adding sig-

ificant latency) [9,45] . TCP congestion control (used in such net-

orks), in turn, cannot ensure performance isolation among ap-

lications [8] ; it only guarantees fairness among flows. Judd and

tanley [40] show through measurements that many TCP design

ssumptions do not hold in datacenter networks, leading to in-

dequate performance. While TCP can provide high utilization, it

oes so very inefficiently. They conclude that the overall median

hroughput of the network is low and that there is a large varia-

ion among flow throughput.

Popa et al. [37] examine two main requirements for network

haring: (i) bandwidth guarantees for tenants and their applica-

ions; and (ii) work-conserving sharing to achieve high network

tilization for providers. In particular, these two requirements

resent a trade-off: strict bandwidth guarantees may reduce uti-

ization, since applications have variable network demands over

ime [26] ; and a work-conserving approach means that, if there is

esidual bandwidth, applications should use it as needed (even if

he available bandwidth belongs to the guarantees of another ap-

lication) [10] .

In this context, SDN/OpenFlow can enable dynamic, fine-

rained network management in order to develop a robust strategy

o explore this trade-off and achieve predictable network perfor-

ance with bandwidth guarantees and work-conserving sharing.

112 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

Fig. 1. Measurement setup.

Fig. 2. Latency of inserting new rules according to flow table occupancy.

a

(

(

t

o

t

o

i

b

[

c

m

h

e

w

e

a

P

c

s

l

t

t

4

n

c

D

a

t

a

s

t

t

[

c

p

a

t

n
3.2. Scalability challenges of SDN/openflow in DCNs

SDN-based networks involve the control plane more frequently

than traditional networking [19] . In the context of large-scale

DCNs, this aspect leads to two scalability issues: flow setup time

(the time taken to install new flow rules in forwarding devices)

and flow table size in switches.

Flow setup time. It may add impractical delay for flows, es-

pecially for latency-sensitive ones [13] (as adding even 1 ms of

latency to these flows is intolerable [46]). As SDN relies on the

communication between network devices (data plane) and a log-

ically centralized controller (control plane), it increases (i) control

plane load and (ii) latency (sources for augmented delay). Control

plane load is increased because a typical ToR switch will have to

request rules to the controller for approximately more than 1,500

new flows per second [47] and the controller is expected to pro-

cess and reply to all requests in, at most, a few milliseconds. Con-

sequently, this may end up making both the communication with

the controller and the controller itself bottlenecks. Latency is aug-

mented because new flows are delayed at least two RTTs (i.e., com-

munication between the ASIC and the management CPU and be-

tween that CPU and the controller) [19] , so that the controller can

install the appropriate rules at forwarding devices.

Experiments to measure flow setup time. We evaluated the

time taken to perform the operation of inserting rules at a switch’s

TCAM. Our measurement setup (shown in Fig. 1) consists of one

host with three 1 Gbps interfaces connected to an OpenFlow

switch (Centec v350): eth0 interface is connected to the control

port and eth1 and eth2 are connected to data ports on the switch.

The switch uses OpenFlow 1.3 and has a TCAM that stores at most

2,0 0 0 rules. The host runs OpenFlow controller Ryu, which listens

for control packets on eth0.

The experiment works as follows. The switch begins with a

given number of rules installed in the TCAM (which represents its

table occupancy). The host runs a packet generator to send a sin-

gle UDP flow on eth1. This flow generates a table-miss event in

the switch (i.e., the switch does not have an appropriate rule to

handle the flow sent by the packet generator). Consequently, the

switch sends a packet_in message to the controller. Upon receiving

the packet_in, the controller processes the request and sends back

a flow_mod message with the appropriate rule to be installed in

the switch TCAM to handle the flow. Once the switch installs the

rule, it forwards the matching packets to the link connected on the

host eth2 interface. Like He et al. [48] , the latency of the operation

is calculated as follows: (i) timestamp1 is recorded when the con-

troller sends the flow_mod to the switch on eth0; and (ii) times-

tamp2 is recorded when the first packet of the flow arrives on the

host eth2 interface. Since the round-trip time (RTT) between the

switch and host is negligible in our experiments, 4 the latency is

calculated by subtracting timestamp1 from timestamp2.
4 While the RTT is negligible in our experiments (as the switch is directly con-

nected to the controller), it may not be the case in large-scale datacenters with

hundreds of switches.

c

p

o

f
Fig. 2 shows the latency of inserting new rules at the TCAM (y-

xis) according to the number of rules already installed in the table

x-axis). The experiment was executed in a baseline SDN setting

without employing our proposal, Predictor); it was repeated 10

imes; and each point in the plot represents one measured value of

ne repetition and the line depicts the median value. Results show

hat median latency and variability increase according to flow table

ccupancy. These results are in line with previous measurements

n the literature, such as He et al. [48] . Since adding even 1ms may

e intolerable for some applications (e.g., latency-sensitive ones)

46] , reduced flow table occupancy is highly desirable in DCNs be-

ause of flow setup time.

Flow table size. Flow tables are a restricted resource in com-

odity switches, as TCAMs are typically expensive and power-

ungry [20,21,49] . Such devices usually have a limited number of

ntries available for OpenFlow rules, which may not be enough

hen considering that large-scale datacenter networks have an el-

vated number of active flows per second [22] .

Therefore, the design of Predictor takes both flow setup time

nd flow table size in switches into account. More specifically,

redictor proactively installs rules for intra-application communi-

ation at allocation time (thereby eliminating the latency of flow

etup for most traffic in DCNs) and considers flows at application-

evel (reducing the number of flow table entries and, consequently,

he time taken to install new rules in forwarding devices). We de-

ail Predictor and justify the decisions in the next sections.

. Predictor overview

We first present an overview of Predictor, including its compo-

ents and the interactions between them in order to address the

hallenge of performance interference in large-scale, SDN-based

CNs.

Predictor is designed taking four requirements into consider-

tion: (i) scalability, (ii) resiliency, (iii) predictable and guaran-

eed network performance, and (iv) high network utilization. First,

ny design for network sharing must scale to hundreds of thou-

ands of VMs and deal with heterogeneous workloads of applica-

ions (typically with bursty traffic). Second, it needs to be resilient

o churn both at flow-level (because of the rate of new flows/s

22]) and at application-level (given the rates of application allo-

ation/deallocation observed in datacenters [10]). Third, it needs to

rovide predictable and guaranteed network performance, allowing

pplications to maintain a base-level of performance even when

he network is congested. Finally, any design should achieve high

etwork utilization, so that spare bandwidth can be used by appli-

ations with more demands than their guarantees.

Predictor is designed to fulfill the above requirements. While

roviders can reduce operational costs and achieve economies

f scale, tenants can run their applications predictably (possibly

aster, reducing costs). Fig. 3 shows an overview of Predictor, which

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 113

Fig. 3. Predictor overview.

i

m

b

q

t

l

S

t

p

t

t

t

a

n

c

a

a

s

c

d

e

d

t

n

a

a

c

l

a

t

a

c

k

i

i

Fig. 4. Virtual network topology of a given application.

c

n

l

t

(

n

a

t

b

o

t

f

O

s

t

(

n

u

t

t

s

t

i

f

f

s

i

s

s

i

p

c

P

c

5

i

S

i

m

5

d

[

t

a
s composed of five components: Predictor controller, allocation

odule, application information base (AIB), network information

ase (NIB) and OpenFlow controller. They are discussed next.

Predictor controller. It receives requests from tenants. A re-

uest can be either an application to be allocated (whose resources

o be used are determined by the allocation module) or a so-

icitation for inter-application bandwidth guarantees (detailed in

ections 5.1 and 5.3). In case of an incoming application, it sends

he request to the allocation module. Once the allocation is com-

leted (or if the request is for inter-application communication),

he Predictor controller generates and sends appropriate flow rules

o the OpenFlow controller. The OpenFlow controller, then, updates

he tables (of forwarding devices) that need to be modified.

Note that the controller installs rules to identify flows at

pplication-level. This granularity increases neither flow setup time

or overhead in forwarding devices. Rules for intra-application

ommunication are installed when the respective applications are

llocated and removed when those applications conclude and

re deallocated. Rules for inter-application communication are in-

talled when VMs need to exchange data with VMs of other appli-

ations. This behavior, in fact, reduces overhead compared to a tra-

itional SDN/OpenFlow setting, where rules must be installed for

ach new flow in the network. This happens because large-scale

atacenters typically have millions of active flows per second. Fur-

hermore, it hinders neither network controllability for providers

or network sharing among tenants and their applications because,

s discussed in Section 1 , (a) providers charge tenants based on the

mount of resources consumed by applications; and (b) congestion

ontrol in the network is expected to be performed at application-

evel [12] . We provide more details in Sections 6 and 7 .

When necessary, Predictor can also take advantage of flow man-

gement at lower levels (for instance, by matching other fields in

he OpenFlow protocol. Nonetheless, given the amount of resources

vailable in commodity switches and the number of flows that

ome and go in a small period of time, low-level rules need to be

ept to a minimum.

Allocation Module. This component is responsible for allocat-

ng incoming applications in the datacenter infrastructure, accord-

ng to available resources. It receives requests from the Predictor
ontroller, determines the set of resources to be allocated for each

ew request and updates the AIB and NIB. We detail the allocation

ogic in Section 5.3.1 .

Application Information Base (AIB). It keeps detailed informa-

ion regarding each allocated application, including its identifier

ID), VM-to-server mapping, IP addresses, bandwidth guarantees,

etwork weight (for work-conserving sharing), links being used

nd other applications it communicates with. It provides informa-

ion for the Predictor controller to compute flow rules that need to

e installed in switches.

Network Information Base (NIB). It is composed of a database

f resources, including hosts, switches, links and their capabili-

ies (such as link capacity and latency). In general, it keeps in-

ormation about computing and network state, received from the

penFlow controller (current state) and the allocation module (re-

ources used for newly allocated applications). The Predictor con-

roller uses information stored in the NIB to map logical actions

e.g., intra- or inter-application communication) into the physical

etwork. While the AIB maintains information at application gran-

larity, the NIB keeps information at network layer. The design of

he NIB was inspired by Onix [17] and PANE [50] .

OpenFlow controller. It is responsible for communication

o/from forwarding devices and Open vSwitches [51] in hypervi-

ors, in order to update network state and get information from

he network (e.g., congested links and failed resources). It receives

nformation from the Predictor controller to modify flow tables in

orwarding devices and updates the NIB upon getting information

rom the network.

Each component is installed in one or multiple dedicated

ervers, as follows. The Predictor controller is a logically central-

zed system (i.e., multiple controller instances, one instance per

erver), as discussed in Section 5.4 . The allocation module is in-

talled in a server that implements the allocation logic explained

n Section 5.3 . Like the Predictor controller, AIB and NIB are im-

lemented in a logically centralized system. Finally, the OpenFlow

ontroller can be implemented in the same set of servers as the

redictor controller (as it interacts frequently with the Predictor

ontroller) or in different server(s).

. System description

Section 5.1 presents application requests. Section 5.2 exam-

nes how bandwidth guarantees are provided for applications.

ection 5.3 describes the mechanisms employed for resource shar-

ng (namely, resource allocation and work-conserving rate enforce-

ent). Finally, Section 5.4 details the control plane design.

.1. Application requests

Tenants request applications to be allocated in the cloud

atacenter using the hose model (similarly to past proposals

12,13,23,26,32]). The hose model allows to capture the seman-

ics of guarantees being offered, as shown in Fig. 4 . In this model,

ll VMs of an application are connected to a non-blocking virtual

114 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

Fig. 5. Example of intra-application bandwidth guarantees.

P

t

i

a

r

b

s

a

g

c

e

F

f

n

a

r

c

c

o

a

c

t

t

t

c

5 While Predictor may overprovision bandwidth at the moment applications are

allocated, it does not waste bandwidth because of its work-conserving strategy (ex-

plained in Section 5.3.2). Without overprovisioning bandwidth at first, it would not

be feasible to provide bandwidth guarantees for applications (as DCNs are typically

oversubscribed).
6 A VM cluster is a set of VMs of the same application located in the same rack.
switch through dedicated bidirectional links. This represents how

tenants perceive their applications (i.e., as if they were the only

ones executing in the cloud). Each application a is represented

by its resource demands and network weight, or more formally,

〈 N a , B a , w a , comm

inter
a 〉 . Its terms are: N a ∈ N

∗ specifies the number

of VMs; B a ∈ R

+ represents the bandwidth guarantees required by

each VM; w a ∈ [0, 1] indicates the network weight; and comm

inter
a is

an optional field that contains information about inter-application

communication for application a . This specification is taken as in-

put in the resource allocation algorithm (Algorithm 1) to map the

requested resources for the application in the datacenter infras-

tructure. This is similar to Virtual Network Embedding [52] .

The network weight enables residual bandwidth (unallocated

or reserved bandwidth for an application and not currently being

used) to be proportionally shared among applications with more

demands than their guarantees (work-conservation). Therefore, the

total amount of bandwidth available for each VM of application a

at a given period of time, following the hose model, is denoted

by B a + spare (s, v a) , where spare (s, v a) identifies the share of spare

bandwidth assigned to VM v of application a (i.e., v a) located at

server s :

spare (s, v a) =

w a ∑

v ↑ V s | v ∈ V s w v
∗ SpareCapacity (1)

where V s denotes the set of all co-resident VMs (i.e., VMs placed

at server s), v ↑ V s | v ∈ V s represents the subset of VMs at server

s that need to use more bandwidth than their guarantees and

SpareCapacity indicates the residual capacity of the link that con-

nects server s to the ToR switch.

The term comm

inter
a is optional and allows tenants to proac-

tively request guarantees for inter-application communication

(since it would be infeasible to provide all-to-all communica-

tion guarantees between VMs in large-scale datacenters [12]).

This field represents a set composed of elements in the form

of 〈 srcVM a , dstVMs , begTime , endTime , reqRate 〉 , where: srcVM a de-

notes the source VM of application a ; dstVMs is the set of des-

tination VMs (i.e., unicast or multicast communication from the

source VM to each destination VM); begTime and endTime rep-

resent, respectively, the time that the communication starts and

ends; and reqRate indicates the total amount of bandwidth per

second needed by flows belonging to traffic from this (these) com-

munication(s). This information will be used by Algorithm 1 to

reserve bandwidth for the specified inter-application communica-

tions when allocating the application.

By providing optional specification of inter-application commu-

nication, Predictor allows requests from tenants with or without

knowledge of application communication patterns and desired re-

sources. Application traffic patterns are often known [3,11] or can

be estimated by employing the techniques described by Lee et al.

[1] , Xie et al. [26] and LaCurts et al. [27] . Note that, even if ten-

ants do not proactively request resources for communication with

other applications/services (i.e., they do not use comm

inter
a), their

applications will still be allowed to reactively receive guarantees

for communication with others (as detailed in Section 5.2).

In line with past proposals [12,13,26,32] , two assumptions are

made. First, we abstract away non-network resources and consider

all VMs with the same amount of CPU, memory and storage. Sec-

ond, we consider that all VMs of a given application receive the

same bandwidth guarantees (B a).

5.2. Bandwidth guarantees

Predictor provides bandwidth guarantees for both intra- and

inter-application communication. We discuss each one next.

Intra-application network guarantees. Typically, this type of

communication represents most of the traffic in DCNs [12] . Thus,
redictor allocates and ensures bandwidth guarantees at applica-

ion allocation time 5 (i.e., the moment the application is allocated

n the datacenter infrastructure) by proactively installing flow rules

nd rate-limiters in the network through OpenFlow.

Each VM of a given application a is assigned a bidirectional

ate of B a (as detailed in Section 5.1). Limiting the communication

etween VMs located in the same server or in the same rack is

traightforward, since it can be done locally by the Open vSwitch

t each hypervisor.

In contrast, for inter-rack communication, bandwidth must be

uaranteed throughout the network, along the path used for such

ommunication. Predictor provides guarantees for this traffic by

mploying the concept of VM clusters . 6 To illustrate this concept,

ig. 5 shows a simplified scenario where a given application a has

our clusters: c a , 1 , c a , 2 , c a , 3 and c a , 4 . Since each VM of a can-

ot send or receive data at a rate higher than B a , traffic between

 pair of clusters c a, x and c a, y is limited by the smallest cluster:

ate c a,x ,c a,y = min (| c a,x | , | c a,y |) ∗ B a , where rate c a,x ,c a,y represents the

alculated bandwidth for communication between clusters c a, x and

 a, y (for x, y ∈ { 1 , 2 , 3 , 4 } and x � = y), and | c a, i | denotes the number

f VMs in cluster i of application a . In this case, rate c a,x ,c a,y is guar-

nteed along the path used for communication between these two

lusters by rules and rate-limiters configured in forwarding devices

hrough OpenFlow.

We apply this strategy at each level up the topology (reserving

he minimum rate required for the communication among clus-

ers). In general, the bandwidth required by one VM cluster to

ommunicate with all other clusters of the same application is

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 115

Fig. 6. Detailed process of reacting to new flows in the network for inter-

application communication.

g

r

w

m

i

m

t

s

a

a

w

c

b

u

c

m

a

r

c

V

p

fi

d

a

t

s

r

t

f

V

t

t

b

a

w

A

s

p

V

r

f

c

a

U

u

o

Fig. 7. Detailed process of receiving communication requests from applications for

inter-application communication.

r

r

s

t

w

i

d

(

c

v

P

5

p

a

m

5

c

t

p

o

m

V

w

i

c

a

i

i

s

t

r

o

p

l

S

i

c

t

n

i

e

r

o

t

a
iven by the following expression:

ate c a,x
= min

(

| c a,x | ∗ B a ,
∑

c∈ C a ,c � = c a,x

| c| ∗ B a

)

∀ c a,x ∈ C a (2)

here rate c a,x denotes the bandwidth required by cluster x to com-

unicate with other clusters associated with application a and C a
ndicates the set of all clusters of application a .

Inter-application communication. Applications in datacenters

ay exhibit complex communication patterns. However, providing

hem with static hose guarantees does not scale for DCNs [12] ,

ince bandwidth guarantees would have to be enforced between

ll pairs of VMs. Furthermore, tenants may not know in advance

ll applications/services that their applications will communicate

ith.

Predictor dynamically sets up guarantees for inter-application

ommunication according to the needs of applications and residual

andwidth in the network. In case guarantees were not requested

sing the field comm

inter
a (as described in Section 5.1), the Predictor

ontroller provides two ways of establishing guarantees for com-

unication between VMs of distinct applications and services: re-

cting to new flows in the network and receiving communication

equests from applications.

Reacting to new flows in the network. Fig. 6 shows the pro-

ess of reacting to new flows in the network. When a VM (source

M) needs to exchange data with one or more VMs of another ap-

lication, it can simply send packets to those VMs (first step in the

gure). The hypervisor (through its Open vSwitch, the forwarding

evice) of the server hosting the source VM receives such packets

nd, since they do not match any rule, sends a request to the con-

roller asking how to handle packets from this new flow (second

tep in the figure). The Predictor controller, then, determines the

ules needed by the new flow and installs the set of rules along

he appropriate path in the network (third step in the figure). The

orwarding device, then, forwards the packets to the destination

M along the path determined by the controller (fourth step in

he figure). In this case, the communication will have no guaran-

ees (i.e., it will be best-effort) and the maximum allowed rate will

e up to the guarantees of the VM (B a), except when there is avail-

ble (unused) bandwidth in the network (i.e., Predictor provides

ork-conservation). The allowed rate for the VM is determined by

lgorithm 2 .

Receiving communication requests from applications. Fig. 7

hows the process of receiving communication requests from ap-

lications. Prior to initiating the communication with destination

M(s) belonging to other application(s), the source VM sends a

equest to the Predictor controller for communication with VMs

rom other applications (first step in the figure). This request is

omposed of the set of destination VMs, the bandwidth needed

nd the expected amount of time the communication will last.

pon receiving the request, the Predictor controller verifies resid-

al resources in the network, sends a reply to the source VM (sec-

nd step in the figure) and, in case there are enough available
esources, generates and installs the appropriate set of rules and

ate-limiters for this communication (third step in the figure). The

ource VM, then, initiates the communication by sending packets

o the destination VMs (fourth step in the figure), and the for-

arding devices (with appropriate rules and rate-limiters already

nstalled by the Predictor controller) forward these packets to the

estination VMs along the path(s) determined by the controller

fifth step in the figure). In this case, the bandwidth rate for the

ommunication will be guaranteed. This approach is similar to pro-

iding an API for applications to request network resources, like

ANE [50] .

.3. Resource sharing

In this section, we discuss how resources are shared among ap-

lications. In particular, we first examine the process of resource

llocation and, then, present the logic behind the work-conserving

echanism employed by Predictor.

.3.1. Resource allocation

The allocation process is responsible for performing admission

ontrol and mapping application requests in the datacenter infras-

ructure. An allocation can only be made if there are enough com-

uting and network resources available [53] . That is, VMs must

nly be mapped to servers with available resources, and there

ust be enough residual bandwidth for communication between

Ms (as specified in the request). For simplicity, we follow related

ork [13,26,32] and discuss Predictor and its allocation component

n the context of traditional tree-based topologies implemented in

urrent datacenters.

We design a location-aware heuristic to efficiently allocate ten-

nt applications in the infrastructure. The key principle is minimiz-

ng bandwidth for intra-application communication (thus allocat-

ng VMs of the same application as close as possible to each other),

ince this type of communication generates most of the traffic in

he network (as discussed before) and DCNs typically have scarce

esources [26] .

Algorithm 1 employs an online allocation strategy, allocating

ne application at a time, as they arrive. It receives as input the

hysical infrastructure P (composed of servers, racks, switches and

inks) and the incoming application request a (formally defined in

ection 5.1 as 〈 N a , B a , w a , comm

inter
a 〉), and works as follows. First,

t searches for the best placement in the infrastructure for the in-

oming application via dynamic programming (lines 1 – 12). To

his end, N

P
s (l − 1) represents the set of neighbors (directly con-

ected switches) of switch s at level l − 1 . Furthermore, three aux-

liary data structures are defined and dynamically initialized for

ach request: (i) set R a stores subgraphs with enough computing

esources for application a ; (ii) V a s stores the total number of VMs

f application a the s -rooted subgraph can hold; and (iii) C a s stores

he number of VM clusters that can be formed in subgraph s . The

lgorithm traverses the topology starting at rack level (level 1), up

116 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

Algorithm 1: Location-aware algorithm.

Input : Physical infrastructure P (composed of servers, racks,
switches and links), Application a = 〈 N a , B a , w a , comm

inter
a 〉

Output : Success/Failure code al l ocated

// Search for the best placement in the infrastructure
1 R a ← ∅ ;
2 foreach level l of P do
3 if l == 1 then // Top-of-Rack switches
4 foreach ToR r do
5 V a r ← num. available VMs in the rack;
6 C a r ← 1;
7 if V a r ≥ N

a then R a ← R a ∪ { r} ;
8 else // Aggregation and core switches
9 foreach Switch s at level l do

10 V a s ←

∑

w ∈{ N P s (l−1) } V
a

w ;

11 C a s ←

∑

w ∈{ N P s (l−1) } C
a
w ;

12 if V a s ≥ N

a then R a ← R a ∪ { s } ;
// Proceed to the allocation

13 al l ocated ← failure code;
14 while Application a not allocated and R a not empty do
15 r ← Select subgraph from R a ;
16 R a ← R a \ { r} ;

// VM placement
17 Allocate VMs of application a at r;

// Bandwidth allocation
18 foreach Level l from 0 to Height(r) do
19 Allocate bandwidth at l according to Section 5.2 and Equation

2;

20 foreach Inter-application communication c ∈ comm

inter
a do

21 Allocate bandwidth for inter-application communication c
specified at allocation time (as defined in Section 5.1);

22 if Application was successfully allocated at r then
23 al l ocated ← success code
24 else al l ocated ← failure code;

25 return al l ocated;

5

s

p

w

g

b

a

g

e

t

w

m

1

(

t

s

s

t

a

a

m

(

2

t

a

h

i

t

u

t

a

a

d

d

m

(

o

t

t

s

t

w

to the core, and determines subgraphs with enough available re-

sources to allocate the incoming request.

After verifying the physical infrastructure and determining pos-

sible placements, the algorithm starts the allocation phase (lines

13 – 24). First, it selects one subgraph r at a time from the set R a

to allocate the application (line 15). The selection of a candidate

subgraph takes into account the number of VM clusters. Therefore,

the selected subgraph is the one with the minimum number of

VM clusters (i.e., the best candidate), so that VMs of the same ap-

plication are allocated close to each other, reducing the amount of

bandwidth needed for communication between them (as the net-

work often represents the bottleneck when compared to comput-

ing resources [54]).

When a subgraph is selected, the algorithm allocates the ap-

plication with a coordinated node (VM-to-server, in line 17) and

link (bandwidth reservation, in lines 18 – 21) mapping, simi-

larly to the virtual network embedding problem [55] . In partic-

ular, bandwidth for intra-application communication (lines 18 –

19) is allocated through a bottom-up strategy, as follows. First, it

is reserved at servers (level 0). Then, it is reserved, in order, for

each subsequent level of the topology, according to the bandwidth

needed by communication between VMs from distinct racks that

belong to the same application (as explained in Section 5.2 and in

Eq. 2 , and exemplified in Fig. 5). After that, bandwidth for inter-

application communication (that was specified at allocation time

in field comm

inter
a) is allocated in lines 20 – 21 (recall that comm

inter
a

was defined in Section 5.1).

Finally, the algorithm returns a success code if application a

was allocated or a failure code otherwise (line 25). Applications

that could not be allocated upon arrival are discarded, similarly to

Amazon EC2 [56] .
.3.2. Work-Conserving rate enforcement

Predictor provides bandwidth guarantees with work-conserving

haring. This is because only enforcing guarantees through static

rovisioning leads to underutilization and fragmentation [23] ,

hile offering work-conserving sharing only does not provide strict

uarantees for tenants [12] . Therefore, in addition to ensuring a

ase-level of guaranteed rate, Predictor proportionally shares avail-

ble bandwidth among applications with more demands than their

uarantees (work-conservation), as defined in Eq. (1) .

We design an algorithm to periodically set the allowed rate for

ach co-resident VM on a server. In order to provide smooth in-

eraction with TCP, we follow ElasticSwitch [23] and execute the

ork-conserving algorithm between periods of time one order of

agnitude larger than the network round-trip time (RTT), e.g.,

0 ms instead of 1 ms.

Algorithm 2 aims at enabling smooth response to bursty traffic

since traffic in DCNs may be highly variable over short periods of

ime [4,9]). It receives as input the list of VMs (V s) hosted on server

 , their current demands (which are determined by monitoring VM

ocket buffers, similarly to Mahout [30]), their bandwidth guaran-

ees and their network weight (specified in the application request

nd defined in Section 5.1).

Algorithm 2: Work-conserving rate allocation.

Input : Set of VMs V s allocated on server s , Current demands of VMs
d emand , Bandwidth guarantees B for each VM, Network
weight w for each VM

Output : Rate nRate for each co-resident VM

1 foreach v ∈ V s do
2 if v ↓ V s then nRate [v] ← d emand [v] ;
3 else nRate [v] ← B [v] ;

4 residual ← LinkCapacity −
(∑

v ↑ V s B [v] +

∑

v ↓ V s demand[v]
)
;

5 hungryVMs ← v ↑ V s | v ∈ V s ;
6 while residual > 0 and hungryVMs not empty do
7 foreach v ∈ hungryVMs do
8 nRate [v] ←

nRate [v] + min

(
d emand [v] − nRate [v] ,

(
w [v] ∑

u ↑ V s w [u]
× residual

))
;

9 if nRate [v] == d emand [v] then
10 hungryVMs ← hungryVMs \ { v } ;
11 return nRate ;

First, the rate for each VM is calculated based on their demands

nd the guaranteed bandwidth B [v] (lines 1 – 3). In case the de-

and of a VM is equal or lower than its bandwidth guarantees

represented by v ↓ V s | v ∈ V s), the rate is assigned and enforced (line

), so that the exact amount of bandwidth needed for communica-

ion is used (wasting no network resources). In contrast, the guar-

ntee B [v] is initially assigned to nRate [v] for each VM v ∈ V s with

igher demands than its guarantees (represented by v ↑ V s | v ∈ V s),

n line 3. Then, the algorithm calculates the residual bandwidth of

he link connecting the server to the ToR switch (line 4). The resid-

al bandwidth is calculated by subtracting from the link capacity

he guarantees of VMs with higher demands than their guarantees

nd the rate of VMs with equal or lower demands than their guar-

ntees.

The last step establishes the bandwidth for VMs with higher

emands than their guarantees (line 5 – 10). The rate (line 8) is

etermined by adding nRate [v] (initialized in line 3) and the mini-

um bandwidth between (i) the difference of the current demand

 demand [v]) and the rate (nRate [v]); and (ii) the proportional share

f residual bandwidth the VM would be able to receive according

o its weight w [v]. Note that there is a “while” loop (lines 6 – 10)

o guarantee that all residual bandwidth is used or all demands are

atisfied. If this loop were not used, there could be occasions when

here would be unsatisfied demands even though some bandwidth

ould be available.

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 117

Fig. 8. Design of Predictor’s control plane.

c

w

d

c

n

T

b

b

r

O

a

a

t

5

s

a

d

c

q

n

a

a

f

d

t

t

s

t

p

t

o

r

l

c

t

T

t

p

i

a

D

d

s

g

i

D

t

m

p

c

w

H

m

c

g

t

t

o

c

o

d

t

r

o

P

6

f

D

b

p

c

t

a

S

6

c

t

m

d

o

f

p

m

d

a

l

a

c

a

f

t

T

7 In oversubscribed networks, such as DCNs, where traffic may exceed link capac-

ities in some occasions, in-band control may result in network inconsistencies, as

control packets may not (or take a long time to) reach the destination.
With this algorithm, Predictor guarantees that VMs will not re-

eive more bandwidth than they need (which would waste net-

ork resources) and bandwidth will be fully utilized if there are

emands (work-conservation). Moreover, the algorithm has fast

onvergence on bandwidth allocation and can adapt to the sig-

ificant variable communication demands of cloud applications.

herefore, if there is available bandwidth, VMs can send traffic

ursts at a higher rate (unlike Silo [13] , Predictor allows traffic

ursts with complete work-conservation).

In summary, if the demand of a VM exceeds its guaranteed

ate, data can be sent and received at least at the guaranteed rate.

therwise, if it does not, the unutilized bandwidth will be shared

mong co-resident VMs whose traffic demands exceed their guar-

ntees. We provide an extensive evaluation in Section 6 to verify

he benefits of the algorithm.

.4. Control plane design

The control plane design of the network is an essential part of

oftware-defined networks, as disconnection between the control

nd data planes may lead to severe packet loss and performance

egradation (forwarding devices can only operate correctly while

onnected to a controller) [57,58] . Berde et al. [59] define four re-

uirements for the control plane: (i) high availability (usually five

ines [60]); (ii) global network state, as the control plane must be

ware of the entire network state to provide guarantees for ten-

nts and their applications; (iii) high throughput, to guarantee per-

ormance in terms of satisfying requests even at periods of high

emands; and (iv) low latency, so that end-to-end latency for con-

rol plane communication (i.e., updating network state in response

o events) is small.

Based on these requirements, Fig. 8 shows the control plane de-

ign for Predictor. In this figure, we show, as a basic example, a

ypical 2-layer tree-like topology with decoupled control and data

lanes. We can see two major aspects: (i) the placement of con-

roller instances (control plane logic) as a cluster in one location

f the network (connected to all core switches); and (ii) the sepa-

ation between resources for both planes (represented by different

ine styles and colors for link bandwidth), indicating out-of-band

ontrol plane communication. We discuss them next.

Cluster of controller instances. Following WL2 [61] , the con-

rol plane logic is composed of a cluster of controller instances.

here are two reasons for this. First and most important, Predic-

or needs strong consistency among the state of its controllers to

rovide network guarantees for tenants and their applications. If
nstances were placed at different locations of the topology, the

mount of synchronization traffic would be unaffordable, since

CNs typically have highly dynamic traffic patterns with variable

emands [4,5,9] . Moreover, DCNs are typically oversubscribed with

carce bandwidth [26] .

Second, the control plane is expected to scale-out (periodically

row or shrink the number of active controller instances) accord-

ng to its load, needed for high availability and throughput. Since

CNs usually count with multiple paths [45] , one controller loca-

ion is often sufficient to meet existing requirements [62] . Further-

ore, if controllers were placed at several locations, a controller

lacement algorithm (e.g., Survivor [57]) would have to be exe-

uted each time the number of instances were adjusted, which

ould delay the response to data plane requests (as this is a NP-

ard problem [62]).

Out-of-band control. Predictor uses out-of-band control to

anage the network. As the network load may change signifi-

antly over small periods of time [22] and some links may get con-

ested [9] (due to the high oversubscription factor [63]), the con-

rol and data planes must be kept isolated from one another, so

hat traffic from one plane does not interfere 7 with the other. In

ther words, control plane traffic should not be impacted by rapid

hanges in data plane traffic patterns (e.g., bursty traffic). Using

ut-of-band control, some bandwidth of each link shared with the

ata plane (or all bandwidth from links dedicated to control func-

ions) is reserved for the control plane (represented in Fig. 8 as

ed dotted lines). In the next section, we show how the amount

f bandwidth reserved for the control plane affects efficiency of

redictor.

. Evaluation

Below, we evaluate the benefits and overheads of Predictor. We

ocus on showing that Predictor (i) can scale to large SDN-based

CNs; (ii) provides both predictable network performance (with

andwidth guarantees) and work-conserving sharing; and (iii) out-

erforms existing schemes for DCNs (the baseline SDN/OpenFlow

ontroller and DevoFlow [19]). Towards this end, we first describe

he environment and workload used (in Section 6.1). Then, we ex-

mine the main aspects of the implementation of Predictor (in

ection 6.2). Finally, we present the results in Section 6.3 .

.1. Setup

Environment. To show the benefits of Predictor in large-scale

loud platforms, we developed, in Java, a discrete-time simulator

hat models a multi-tenant, SDN-based shared datacenter. In our

easurements, we focus on tree-like topologies used in current

atacenters [13] . More specifically, the network topology consists

f a three-level tree topology, with 160 0 0 machines at level 0. We

ollow current schedulers and related work [64] and divide com-

uting resources of servers (corresponding to some amount of CPU,

emory and storage) into slots for hosting VMs; each server is

ivided into 4 slots, resulting in a total amount of 640 0 0 avail-

ble VMs in the datacenter. Each rack is composed of 40 machines

inked to a ToR switch. Every 10 ToR switches are connected to an

ggregation switch, which, in turn, is connected to the datacenter

ore switch. The capacity of each link is defined as follows: servers

re connected to ToR switches with access links of 1 Gbps; links

rom racks up to aggregation switches are 10 Gbps; and aggrega-

ion switches are attached to a core switch with links of 50 Gbps.

herefore, there is no oversubscription within each rack and 1:4

118 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

Fig. 9. Architecture of server-level implementation of Predictor.

c

v

l

1

t

F

(

s

fi

c

n

a

c

t

e

v

c

l

s

p

c

s

p

r

V

V

6

c

l

t

a

S

f

e

g

t

T

(

t

fi

c

r

e

n

t

c

c

o

s

fl

d

f

e

r

b

d

w

v
oversubscription at the aggregation and core layers. This setup is

in line with prior work [12,13,26] .

Workload. The workload is composed of incoming applications

to be allocated in the datacenter. They arrive over time, which

means Predictor employs an online allocation strategy (as de-

fined in Section 5.3.1). For pragmatic reasons and lack of publicly

available traces, we could not obtain realistic workloads for large-

scale cloud datacenters. Therefore, we generated the workload

according to the measurements of related work [10,12,22,26] .

Following the results of prior studies in datacenters [14,15] , we

consider a heterogeneous set of applications, including MapReduce

and Web Services. Each application a is represented as a tuple

〈 N a , B a , w a , comm

inter
a 〉 , defined in Section 5.1 . The values were

generated as follows. The number of VMs in application a (N a)

is exponentially distributed around a mean of 49 VMs (following

measurements from Shieh et al. [10]). The maximum guaranteed

bandwidth rate of each VM in application a (B a) was generated

by reverse engineering the traces used by Benson et al. [22] and

Kandula et al. [47] . More specifically, we used their measure-

ments related to inter-arrival flow-time and flow-size at servers

to generate and simulate network demands of applications. Unless

otherwise specified, of all traffic in the network, 20% of flows

are destined to other applications (following measurements from

Ballani et al. [12]) and 1% is classified as large flows (following

information from Abts et al. [9]). We pick the destination of

each flow by first determining whether it is an intra- or inter-

application flow and then uniformly selecting a destination. Finally,

the weight w a of each application a is uniformly distributed in the

interval [0, 1].

6.2. Implementation aspects of predictor

Fig. 9 shows the architecture of the server-level implementation

of Predictor. As described by Pfaff et al. [51] , the virtual machines

allocated on the server send and receive packets to/from the net-

work through the hypervisor, using an Open vSwitch. Using the ar-

chitecture proposed by Pfaff et al. as a basis, we implemented a lo-

cal controller which directly communicates with the Open vSwitch.

Together, the Open vSwitch and the local controller are responsible

for handling all traffic to/from local virtual machines.

This architecture leverages the relatively large amount of pro-

cessing power at end-hosts [65] in the datacenter to implement

two key aspects of Predictor (following the description presented

in the previous sections): (i) identifying flows at application-level;

and (ii) providing network guarantees and dynamically enforcing

rates for VMs. Both aspects are discussed next.

First, to perform application-level flow identification, Predic-

tor utilizes Multiprotocol Label Switching (MPLS). More specifi-
ally, applications are identified in OpenFlow rules (at the Open

Switch) through the label field in the MPLS header. The MPLS

abel is composed of 20 bits, which allows Predictor to identify

,048,576 different applications. The complete operation of iden-

ifying and routing packets at application-level works as follows.

or each packet received from the source VM, the Open vSwitch

controlled via the OpenFlow protocol) in the source hypervi-

or pushes a MPLS header (four bytes) with an ID in the label

eld (the application ID of the source VM for intra-application

ommunication or a composite ID for inter-application commu-

ication). Subsequent switches in the network use MPLS label

nd IP source and destination addresses (which may be wild-

arded, depending on the possibilities of routing) matching fields

o choose the correct output port to forward incoming pack-

ts. When packets arrive at the destination hypervisor, the Open

Switch pops the MPLS header and forwards the packet to the

orrect VM.

Second, the local controller at each server performs rate-

imiting of VMs. More precisely, the local controller dynamically

ets the allowed rate for each hosted VM by installing the ap-

ropriate rules and rate-limiters at the Open vSwitch. The rate is

alculated by Algorithm 2 , discussed in Section 5.3.2 . Using this

trategy, Predictor can reduce rate-limiting overhead when com-

ared to previous schemes (e.g., Silo [13] , Hadrian [12] , CloudMir-

or [1] and ElasticSwitch [23]), for it only rate-limits the source

M while other schemes rate-limit each pair of source-destination

Ms.

.3. Results

Next, we explain the behavior of the three schemes we are

omparing against each other (Predictor, DevoFlow and the base-

ine). Then, we show the results of the evaluation: (i) we examine

he scalability of employing Predictor on large SDN-based DCNs;

nd (ii) we verify bandwidth guarantees and predictability.

Comparison. We compare Predictor with the baseline

DN/OpenFlow controller and the state-of-the-art controller

or DCNs (DevoFlow [19]). Before showing the results, we briefly

xplain the behavior of Predictor, the baseline and DevoFlow.

In Predictor, bandwidth for intra-application communication is

uaranteed at allocation time. For inter-application communica-

ion guarantees, we consider two modes of operation, as follows.

he first one is called Proactive Inter-Application Communication

PIAC), in which tenants specify in the request all other applica-

ions that their applications will communicate with (by using the

eld comm

inter
a , as explained in Section 5.1). The second one is

alled Reactive Inter-Application Communication (RIAC), in which

ules for inter-application traffic are installed by the controller by

ither reacting to new flows in the network or receiving commu-

ication requests from applications, as defined in Section 5.2 . Note

hat both modes correspond to the extremes for inter-application

ommunication: while PIAC considers that all inter-application

ommunication is specified at allocation time, RIAC considers the

pposite. Furthermore, we highlight that both modes result in the

ame number of rules in devices, but differ in controller load and

ow setup time (results are shown below).

In the baseline, switches forward to the controller packets that

o not match any rule in the flow table (we consider the de-

ault behavior of OpenFlow versions 1.3 and 1.4 upon a table-miss

vent). The controller, then, responds with the appropriate set of

ules specifically designed to handle the new flow.

DevoFlow considers flows at the same granularity than the

aseline, thus generating a similar number of rules in forwarding

evices. However, forwarding devices rely on more powerful hard-

are and templates to generate rules for small flows without in-

olving the controller. For large flows, DevoFlow has two modes

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 119

Fig. 10. Maximum number of rules (that were observed in the experiments) in for-

warding devices.

o

fl

(

D

t

r

g

g

t

o

fl

w

s

w

t

F

e

p

n

t

fl

n

n

i

e

c

c

a

o

b

t

w

v

fl

p

h

b

m

a

S

p

P

a

i

P

7

r

fl

t

i

(

(

a

m

o

i

a

[

c

r

T

a

s

p

c

c

s

n

i

N

t

l

8 Since flow table capacity of current available OpenFlow-enabled switches

ranges from one thousand [66] to around one million entries [67] , the observed

values during the experiments are within acceptable ranges.
f operation. DevoFlow Triggers requires switches to identify large

ows and ask the controller for appropriate rules for these flows

i.e., only packets of large flows are forwarded to the controller).

evoFlow Statistics, in turn, requires forwarding devices to send

he controller uniformly chosen samples (packets), typically at a

ate of 1/10 0 0 packets, so that the controller itself identifies and

enerates rules for large flows. In summary, both DevoFlow modes

enerate the same number of rules in devices, but differ in con-

roller load and flow setup time.

Scalability metrics. We use four metrics to verify the scalability

f Predictor in SDN-based datacenter networks: number of rules in

ow tables, controller load, impact of reserved control plane band-

idth and flow setup time. These are typically the factors that re-

trict scalability the most [18,23] .

Reduced number of flow table entries. Fig. 10 shows how net-

ork load (measured in new flows/second per rack) affects flow

able occupancy in forwarding devices. More precisely, the plots in

ig. 10 (a), (b) and (c) show, respectively, the maximum number of
ntries observed in our experiments 8 that are required in any hy-

ervisor, ToR and aggregation switch for a given average rate of

ew flows at each rack (results for core devices are not shown, as

hey are similar for all three schemes).

In all three plots, we see that the average number of arriving

ows during an experiment affects directly the number of rules

eeded in devices. These results are explained by the fact that the

umber of different flows that pass through forwarding devices

s large and may quickly increase due to the elevated number of

nd-hosts (VMs) and arriving flows in the network. Overall, the in-

rease of the total number of flows requires more rules for the

orrect operation of the network (according to the needs of ten-

nts) and enables richer communication patterns (representative

f cloud datacenters [12]). Note that the number of rules for the

aseline and DevoFlow is similar because (i) they consider flows at

he same granularity; and (ii) the same default timeout for rules

as adopted for all three schemes.

The results show that Predictor substantially outperforms De-

oFlow and the baseline (especially for realistic numbers of new

ows in large-scale DCNs, i.e., higher than 1,500 new flows/second

er rack [23]). More importantly, the curves representing Predictor

ave a smaller growing factor than the ones for DevoFlow and the

aseline. The observed improvement happens because Predictor

anages flows at application-level and also wildcards the source

nd destination addresses in rules when possible (as explained in

ection 6.2). Considering an average number of new flows/second

er rack between 10 0 and 6,0 0 0, the improvements provided by

redictor are between 92–95% for hypervisors, 76–79% for racks

nd 32–40% for aggregation switches. More specifically, for a real-

stic number between 1,500 and 2,000 new flows/second per rack,

redictor reduces the number of rules up to 94% in hypervisors,

8% in ToRs and 37% in aggregation devices. In core devices, the

eduction is negligible (around 1%), because (a) a high number of

ows does not need to traverse core links to reach their destina-

ions, thus the baseline and DevoFlow do not install many rules

n core devices, while Predictor installs application-level rules; and

 b) Predictor proactively installs rules for intra-application traffic

while other schemes install rules reactively).

Since Predictor considers flows at application-level and inter-

pplication flows may require rules at a lower granularity (e.g., by

atching MAC and IP fields), we now analyze how the number

f inter-application flows affects the number of rules in forward-

ng devices for Predictor (previous results considered 20% of inter-

pplication flows, a realistic percentage according to the literature

12]). Note that we only show results for Predictor because the per-

entage of inter-application flows does not impact the number of

ules in forwarding devices for the baseline and DevoFlow.

Fig. 11 shows the maximum number of entries in hypervisors,

oR, aggregation and core devices observed in our experiments (y-

xis) for a given percentage of inter-application flows (x-axis), con-

idering an average of 1,500 new flows/second per rack. As ex-

ected, we see that the number of rules in devices increases ac-

ording to the number of inter-application flows. This happens be-

ause this type of communication often involves a restricted sub-

et of VMs from different applications. Therefore, Predictor may

ot install application-level rules for these flows and may end up

nstalling lower-granularity ones (e.g., by matching the IP field).

onetheless, application-level rules address most of the traffic in

he DCN.

Moreover, the number of rules in aggregation and, in particu-

ar, in core switches is higher than in ToR devices and in hyper-

120 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

Fig. 11. Maximum number of rules in forwarding devices for different percentages

of inter-application flows for Predictor.

Fig. 12. Controller load.

i

r

i

r

c

t

b

w

n

n

f

e

l

o

b

(

g

b

v

o

t

fl

v

h

t

r

fi

m

r

l

a

l

w

d

a

t

I

n

f

i

b

t

(

I

p

w

i

F

i

(

w

e

d

9

r

t

[

c

i

b

p

I
visors. It is so because core switches interconnect several aggre-

gation switches and, as time passes, the arrival and departure of

applications lead to dispersion of available resources in the infras-

tructure. In this context, VMs from different applications (allocated

in distinct ToRs) communicate with each other through paths that

use aggregation and core switches.

In general, Predictor reduces the number of rules installed in

forwarding devices, which can (i) improve hypervisor performance

(as measured by LaCurts et al. [27]); (ii) minimize the amount of

TCAM occupied by rules in switches (TCAMs are a very expensive

resource [21] and consume a high amount of power [68]); and (iii)

minimize the time needed to install new rules in TCAMs, as mea-

sured in Section 3 .

Low controller load. As DCNs typically have high load, the con-

troller should handle flow setups efficiently. Fig. 12 shows the re-

quired capacity in number of messages/s for the controller. For bet-

ter visualization, the y-axis is represented in logarithmic scale, as

the values differ significantly for different schemes. As expected,

the number of messages sent to the controller increases according

to the average number of new flows/s per rack (except for Pre-

dictor PIAC and DevoFlow Statistics). The controller must set up

network paths and allocate resources according to arriving flows

(flows without matching rules in forwarding devices).

The baseline imposes a higher load to its controller than other

schemes. DevoFlow Statistics requires a regular load to its con-

troller, independently of the number of flows, as the number of

messages sent by forwarding devices to the controller depends

only on the amount of traffic in the network DevoFlow Triggers,

in turn, only needs controller intervention to install rules for large

flows (at the cost of more powerful hardware at forwarding de-

vices). Thus, it significantly reduces controller load, but may also

reduce controller knowledge of (i) network load and (ii) flow table

state in switches. Predictor RIAC proactively installs application-

level rules for intra-application communication at allocation time

and reactively sends rules for inter-application traffic upon receiv-
ng communication requests, which reduces the number of flow

equests when compared to the baseline (≈ 91%) but increases it

n comparison to DevoFlow Triggers (≈ 8%). Finally, Predictor PIAC

eceives fine-grained information about intra- and inter-application

ommunication at application allocation time, proactively installing

he respective rules when needed. Therefore, controller load can

e significantly reduced (i.e., the controller receives requests only

hen applications are allocated) without hurting knowledge of

etwork state, but at the cost of some burden on tenants (as they

eed to specify inter-application communication at allocation time

or Predictor PIAC).

Recall that the Predictor modes under evaluation correspond to

xtremes. Therefore, in practice, we expect that Predictor controller

oad will be between the results shown for PIAC and RIAC. More-

ver, we do not show results for controller load varying the num-

er of large flows because results are the same for both modes

and also for the baseline and DevoFlow Statistics). DevoFlow Trig-

ers, however, imposes a higher load to its controller as the num-

er of large flows increases (Fig. 12 depicted results for a realistic

alue of 1% of large flows).

So, in both modes, the Predictor controller is aware of most

f the traffic (at application-level) and performs fine-grained con-

rol. In contrast, DevoFlow Triggers has knowledge of only large

ows (approximately 50% of the total traffic volume [22]) and De-

oFlow Statistics has partial knowledge of network traffic with a

igh number of messages sent to the controller. Note that, despite

hese benefits, there are some drawbacks related to the time rules

emain installed in forwarding devices and the ability to perform

ne-grained load balancing. First, rules for intra-application com-

unication are installed when applications are allocated and are

emoved when applications conclude their execution and are deal-

ocated. Hence, some rules may remain installed more time than in

 baseline setting. Second, since rules are installed at application-

evel, the ability to perform fine-grained load balancing in the net-

ork (e.g., for a flow or for a restricted set of flows) may be re-

uced.

Impact of control plane bandwidth. SDN separates the control

nd data planes. Ideally, control plane communication is expected

o be isolated from data plane traffic, avoiding cross-interference.

n this context, the bandwidth it requires varies: the more dy-

amic the network, the more control plane traffic may be required

or updating network state and getting information from forward-

ng devices. We evaluate the impact of reserving some amount of

andwidth (5%, 10%, 15%, 20%, 25% and 30%) on data plane links

o the control plane and compare it with a baseline value of 0%

which represents no bandwidth reservation for the control plane).

n other words, we want to verify how the acceptance ratio of ap-

lications (y-axis) is affected according to the amount of band-

idth reserved for the control plane (x-axis), since the network

s the bottleneck in comparison to computing resources [26,54] .

ig. 13 confirms that acceptance ratio of requests decreases accord-

ng to the amount of bandwidth available for the control plane

clearly, more bandwidth for the control plane means less band-

idth for the data plane). Nonetheless, this reduction is small,

ven for a worst-case scenario: reserving 30% of bandwidth on

ata plane links for the control plane results in accepting around

% fewer requests.

Therefore, depending on the configuration, SDN may affect DCN

esource utilization and, consequently, provider revenue. There are

wo main reasons: (i) it involves the control plane more frequently

19] ; and (ii) switches are constantly exchanging data with the

ontroller (for both flow setup and the controller to get updated

nformation about network state). In this context, the amount of

andwidth required for the control plane for flow setup is directly

roportional to the number of requests to the controller (Fig. 12).

n our experiments, switches were configured to send the first

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 121

Fig. 13. Impact of reserved bandwidth for the control plane on acceptance ratio of

requests (error bars show 95% confidence interval).

Fig. 14. Flow setup time (normalized by the maximum flow setup time of the base-

line) introduced by the SDN paradigm for new flows.

1

s

f

fl

f

P

1

E

p

o

a

d

t

l

A

t

m

c

c

f

(

t

t

s

T

t

t

t

(

P

Fig. 15. Proportional sharing according to weights (VM 1: 0.2; VM 2: 0.4; and

VM 3: 0.6), considering the same guarantees (200 Mbps) and the same demands

for all three VMs allocated on a given server connected through a link of 1 Gbps.

t

s

t

i

f

a

c

a

t

t

t

c

s

a

f

c

D

s

w

w

p

b

c

d

s

c

p

w

a

t

s

a

r

i

T

(

a

a

1

s
28 bytes of the first packet of new flows to the controller (in-

tead of sending the whole packet). With this configuration and

or a realistic number of new flows/s per rack (i.e., 1,500 new

ows), the bandwidth required by the controller for flow setup

or each scheme was at most the following: 1 Mbps for Predictor

IAC, 15 Mbps for Predictor RIAC, 2 Mbps for DevoFlow Triggers,

73 Mbps for DevoFlow Statistics and 166 Mbps for the baseline.

ven though Predictor may require more bandwidth for its control

lane than DevoFlow in some occasions, it has better knowledge

f current network state and does not need customized hardware

t forwarding devices.

Reduced flow setup time. The SDN paradigm typically intro-

uces additional latency for the first packet of new flows; tradi-

ional SDN implementations (e.g., baseline) delay new flows for at

east two RTTs in forwarding devices (communication between the

SIC and the management CPU and between that CPU and the con-

roller) 9 [19] .

The results in Fig. 14 show the minimum, average and maxi-

um flow setup time (additional latency) for the schemes being

ompared, during the execution of the experiments. For a better

omparison, latency values are normalized (and shown in a scale

rom 0 to 100) according to the maximum value of the baseline

i.e., the highest value in our measurements). Predictor PIAC proac-

ively installs rules for (a) intra-application traffic at allocation

ime and (b) for inter-application traffic before the communication

tarts (due to the information provided in the application request).

hus, it has no additional latency for new flows. Predictor RIAC, in

urn, presents no additional latency for most of the flows (due to

he proactive installation of rules for intra-application communica-

ion). However, it introduces some delay for inter-application flows

maximum measured latency was around 80% of the maximum for
9 For a detailed study of latency in SDN, the interested reader may refer to

hemius et al. [69] ..

a

w

t

1
he baseline). As both Predictor modes correspond to extremes, re-

ults will actually be somewhere between RIAC and PIAC. That is,

he level of information regarding inter-application communication

n application requests will vary, thus eliminating flow setup time

or some inter-application flows.

In DevoFlow Statistics, forwarding devices generate rules for

ll flows in the network. In other words, most of the latency is

omposed of the time taken for communication between the ASIC

nd the management CPU when a new flow is detected. Later on,

he controller installs specific rules for large flows when it iden-

ifies such flows. Thus, this scheme typically introduces low addi-

ional latency. In the case of DevoFlow Triggers, large flows require

ontroller assistance (thereby increasing additional latency), while

mall flows are handled by the forwarding devices themselves (low

dditional latency).

Finally, the baseline requires that forwarding devices always ask

or controller assistance to handle new flows, resulting in increased

ontrol traffic and flow setup time in comparison to Predictor and

evoFlow.

After verifying the feasibility of employing Predictor on large-

cale, SDN-based DCNs (i.e., the benefits provided by Predictor, as

ell as the overheads), we turn our focus to the challenge of band-

idth sharing unfairness. In particular, we show that Predictor (i)

roportionally shares available bandwidth; (ii) provides minimum

andwidth guarantees for applications; and (iii) provides work-

onserving sharing under worst-case scenarios, achieving both pre-

ictability for tenants and high utilization for providers.

Impact of weights on proportional sharing. Before demon-

trating that Predictor provides minimum guarantees with work-

onserving sharing, we evaluate the impact of weights when pro-

ortionally sharing available bandwidth. More specifically, we first

ant to confirm that available bandwidth is proportionally shared

ccording to the weights assigned to applications and their VMs.

Toward this end, Fig. 15 shows, during a predefined period of

ime, three VMs from different applications allocated on a given

erver. These VMs have the same demands and guarantees (blue

nd red lines, respectively), but different weights (0.2, 0.4 and 0.6,

espectively). Note that at instants 87 s, 118 s and 197 s, there

s rapid change in bandwidth demands (blue line) of these VMs.

his change reflects in the allocated bandwidth rate for each VM

pink, brown and green lines). We verify that, in case the sum of

ll three VM demands do not exceed the link capacity (1 Gbps),

ll VMs have their demands satisfied (e.g., between 1 s – 86 s and

18 s – 197 s), independently of their guarantees. In contrast, if the

um of demands exceed the link capacity, each VM gets a share of

vailable bandwidth (i.e., more than its guarantees) according to its

eight (the higher the weight, the more bandwidth it gets). Note

hat, in this case, the rate of each VM stabilizes (between 87 s –

17 s and 197 s – 500 s) because, as the sum of demands exceed

122 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

Fig. 16. Bandwidth rate achieved by the set of VMs allocated on a given server

during a predefined period of time.

Fig. 17. Work-conserving sharing on the server holding the set of VMs from Fig. 16 .

e

a

w

w

a

w

f

o

s

a

A

s

w

n

a

T

b

s

t

D

m

t

m

v

t

t

7

t

i

t

i

h

s

fi

b

g

a

10 Note that Predictor considers only bandwidth guarantees when allocating VMs

(i.e., it does not take into account temporal demands). Therefore, even though the

sum of temporal demands of all VMs allocated on a given server may exceed the

server link capacity, the sum of bandwidth guarantees of these VMs will not exceed

the link capacity.
11 Responsiveness is a critical aspect of cloud guarantees [70] .
the link capacity (and VMs have the same demands and guaran-

tees), the only factor that impacts available bandwidth sharing is

the weight. In general, the results show that the use of weights

enables proportional sharing.

Minimum bandwidth guarantees for VMs. We define it as fol-

lows: the VM rate should be (a) at least the guaranteed rate if the

demand is equal or higher than the guarantees; or (b) equal to

the demand if it is lower than the guarantees. To illustrate this

point, we show, in Fig. 16 , the set of VMs (in this case, three

VMs from different applications) allocated on a given server dur-

ing a predefined time period of an experiment. Note that VM 1

[Fig. 16 (a)] and VM 3 [Fig. 16 (c)] have similar guarantees, but re-

ceive different rates (“used bandwidth”) when their demands ex-

ceed the guarantees (e.g., after 273 s). This happens because they

have different network weights (0.17 and 0.59, respectively), and

the rate is calculated considering the demands, bandwidth guar-

antees, network weight and residual bandwidth. Moreover, we see

(from Figs. 15 and 16) that VMs may not get the desired rate to

satisfy all of their demands instantaneously (when their demands
xceed their guarantees) because (i) the link capacity is limited;

nd (ii) available bandwidth is proportionally shared among VMs.

In summary, we see that Predictor provides minimum band-

idth guarantees for VMs, since the actual rate of each VM is al-

ays equal or higher than the minimum between the demands

nd the guarantees. Therefore, applications have minimum band-

idth guarantees and, thus, can achieve predictable network per-

ormance.

Work-conserving sharing. Bandwidth which is not allocated,

r allocated but not currently used, should be proportionally

hared among other VMs with more demands than their guar-

ntees (according to the weights of each application, using

lgorithm 2). Fig. 17 shows the aggregate bandwidth

10 on the

erver holding the set of VMs in Fig. 16 . In these two figures,

e verify that Predictor provides work-conserving sharing in the

etwork, as VMs can receive more bandwidth (if their demands

re higher than their guarantees) when there is spare bandwidth.

hus, providers can achieve high network utilization. Furthermore,

y providing work-conserving sharing, Predictor offers high re-

ponsiveness 11 to changes in bandwidth requirements of applica-

ions.

In general, Predictor provides significant improvements over

evoFlow, as it allows high utilization and fine-grained manage-

ent in the network for providers and predictability with guaran-

ees for tenants and their applications. As a side effect, Predictor

ay have higher controller load than DevoFlow (the cost of pro-

iding fine-grained management in the network without imposing

o tenants the burden of specifying inter-application communica-

ion at allocation time).

. Discussion

After evaluating Predictor, we discuss its generality and limita-

ions.

Application-level flow identification. In our proof-of-concept

mplementation, Predictor identifies flows at application-level

hrough the MPLS label (application ID with 20 bits). Therefore,

t needs a MPLS header in each packet (adding four bytes of over-

ead). In practice, there are at least two other options to provide

uch functionality. First, when considering the matching fields de-

ned by OpenFlow, application-level flows could also be identified

y utilizing IEEE standard 802.1ad (Q-in-Q) with double VLAN tag-

ing. The advantage of double tagging is a higher number of IDs

vailable (24 bits), while the drawback is an overhead of eight

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 123

b

fl

(

l

f

w

i

e

A

t

p

D

s

d

s

t

o

f

s

s

e

T

c

d

a

s

g

t

g

f

u

m

w

p

a

fi

[

P

T

8

n

t

s

t

d

b

n

fl

a

c

n

fl

P

w

f

s

t

w

a

a

[

A

M

c

R

[

[

[

ytes (two VLAN headers) per packet. Second, application-level

ows could be identified by using OpenFlow Extensible Match

OXM) 12 to define a unique match field for this purpose. Nonethe-

ess, this method is less flexible, as it requires (i) switch support

or OXM; and (ii) programming to add a new matching field in for-

arding devices.

Topology-awareness. Even though Algorithm 1 was specif-

cally designed for tree-like topologies, the proposed strat-

gy is topology-agnostic. Therefore, we simply need to replace

lgorithm 1 to employ Predictor in DCNs with other types of in-

erconnections. We used a tree-like placement algorithm in this

aper for three reasons. First, currently most providers implement

CNs as (oversubscribed) trees, since they can control the over-

ubscription factor more easily with this type of structure (in or-

er to achieve economies of scale). Second, by using an algorithm

pecially developed for a particular structure, we can enable bet-

er use of resources. Thus, we show more clearly the benefits and

verheads of the proposed strategy. Third, we used tree topologies

or the sake of explanation, as it is easier to explain and to under-

tand how bandwidth is allocated and shared among VMs of the

ame application in this kind of topology (e.g., in Fig. 5) than, for

xample, in random graphs.

Dynamic rate allocation with feedback from the network.

he designed work-conserving algorithm does not take into ac-

ount network feedback provided by the OpenFlow module. This

esign choice was deliberately made; we aim at reducing man-

gement traffic in the network, since DCNs are typically oversub-

cribed networks with scarce resources [26] . Nonetheless, the al-

orithm could be extended to consider feedback, which would fur-

her help controlling the bandwidth used by flows traversing con-

ested links.

Application ID management. Predictor controller assigns IDs

or applications (in order to identify flows at application-level)

pon allocation and releases IDs upon deallocation. Therefore, ID

anagement is straightforward, as Predictor has full control over

hich IDs are in use at each period of time.

Application request abstraction. Currently, Predictor only sup-

orts the hose model [71] . Nonetheless, it can use extra control

pplications (one for each abstraction) (i) to parse requests speci-

ed with other models (e.g., TAG [1] and hierarchical hose model

12]); and (ii) to install rules accordingly. With other abstractions,

redictor would employ the same sharing mechanism (Section 5.3).

hus, it would provide the same level of guarantees.

. Conclusion

Datacenter networks are typically shared in a best-effort man-

er, resulting in interference among applications. SDN may enable

he development of a robust solution for interference. However, the

calability of SDN-based proposals is limited, because of flow setup

ime and the number of entries required in flow tables.

We have introduced Predictor in order to scalably provide pre-

ictable and guaranteed performance for applications in SDN-

ased DCNs. Performance interference is addressed by using two

ovel SDN-based algorithms. Scalability is tackled as follows: (i)

ow setup time is reduced by proactively installing rules for intra-

pplication communication at allocation time (since this type of

ommunication represents most of the traffic in DCNs); and (ii) the

umber of rules in forwarding devices is minimized by managing

ows at application-level. Evaluation results show the benefits of

redictor. First, it provides minimum bandwidth guarantees with

ork-conserving sharing (successfully solving performance inter-

erence). Second, it eliminates flow setup time for most traffic in
12 OXM was introduced in OpenFlow version 1.2 and currently is supported by

everal commercial forwarding devices.

[
he network and significantly reduces flow table size (up to 94%),

hile keeping low controller load (successfully dealing with scal-

bility of SDN-based DCNs). In future work, we intend to evalu-

te Predictor on Flexplane [72] and on a testbed (such as CloudLab

73]).

cknowledgments

This work has been supported by the following grants:

CTI / CNPq /Universal (Project Phoenix, 460322/2014-1) and Mi-

rosoft Azure for Research grant award.

eferences

[1] J. Lee , Y. Turner , M. Lee , L. Popa , J.-M. Kang , S. Banerjee , P. Sharma , Applica-

tion-driven bandwidth guarantees in datacenters, ACM SIGCOMM, 2014 .
[2] F.R. Dogar , et al. , Decentralized task-aware scheduling for data center net-

works, ACM SIGCOMM, 2014 .

[3] M. Chowdhury , et al. , Efficient coflow scheduling with Varys, ACM SIGCOMM,
2014 .

[4] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, S. Katti, NUMFab-
ric: fast and flexible bandwidth allocation in datacenters, in: Proceedings of

the 2016 Conference on ACM SIGCOMM 2016 Conference, SIGCOMM ’16, ACM,
New York, NY, USA, 2016, pp. 188–201, doi: 10.1145/2934872.2934890 .

[5] J. Guo , F. Liu , X. Huang , J.C. Lui , M. Hu , Q. Gao , H. Jin , On efficient bandwidth

allocation for traffic variability in datacenters, IEEE INFOCOM, 2014 .
[6] Q. Li , M. Dong , P.B. Godfrey , Halfback: running short flows quickly and safely,

in: Conference on Emerging Networking EXperiments and Technologies, in:
CoNEXT ’15, ACM, New York, NY, USA, 2015 .

[7] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown, I. Abraham,
I. Keslassy, Virtualized congestion control, in: Proceedings of the 2016 Confer-

ence on ACM SIGCOMM 2016 Conference, SIGCOMM ’16, ACM, New York, NY,
USA, 2016, pp. 230–243, doi: 10.1145/2934872.2934889 .

[8] K. He, E. Rozner, K. Agarwal, Y.J. Gu, W. Felter, J. Carter, A. Akella, AC/DC

TCP: virtual congestion control enforcement for datacenter networks, in: Pro-
ceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference, SIG-

COMM ’16, ACM, New York, NY, USA, 2016, pp. 244–257, doi: 10.1145/2934872.
2934903 .

[9] D. Abts, B. Felderman, A guided tour of data-center networking, Commun. ACM
55 (6) (2012) 44–51, doi: 10.1145/2184319.2184335 .

[10] A. Shieh , S. Kandula , A. Greenberg , C. Kim , B. Saha , Sharing the data center

network, in: USENIX NSDI, 2011 .
[11] M.P. Grosvenor , M. Schwarzkopf , I. Gog , R.N.M. Watson , A.W. Moore , S. Hand ,

J. Crowcroft , Queues don’t matter when you can JUMP them!, in: USENIX NSDI,
2015 .

[12] H. Ballani , K. Jang , T. Karagiannis , C. Kim , D. Gunawardena , G. O’Shea , Chatty
tenants and the cloud network sharing problem, in: USENIX NSDI, 2013 .

[13] K. Jang , J. Sherry , H. Ballani , T. Moncaster , Silo: predictable message latency in

the cloud, in: ACM SIGCOMM 2015 Conference, SIGCOMM ’15, ACM, New York,
NY, USA, 2015 .

[14] W. Bai , K. Chen , H. Wang , L. Chen , D. Han , C. Tian , Information-agnostic flow
scheduling for commodity data centers, in: USENIX NSDI, 2015 .

[15] L. Chen, K. Chen, W. Bai, M. Alizadeh, Scheduling mix-flows in commodity
datacenters with Karuna, in: Proceedings of the 2016 Conference on ACM

SIGCOMM 2016 Conference, SIGCOMM ’16, ACM, New York, NY, USA, 2016,

pp. 174–187, doi: 10.1145/2934872.2934888 .
[16] M. Chowdhury , Z. Liu , A. Ghodsi , I. Stoica , HUG: multi-resource fairness for

correlated and elastic demands, USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), USENIX Association, Santa Clara, CA,

2016 .
[17] T. Koponen , M. Casado , N. Gude , J. Stribling , L. Poutievski , M. Zhu , R. Ra-

manathan , Y. Iwata , H. Inoue , T. Hama , S. Shenker , Onix: a distributed control

platform for large-scale production networks, in: USENIX OSDI, 2010 .
[18] Y. Jarraya, T. Madi, M. Debbabi, A survey and a layered taxonomy of software-

Defined networking, IEEE Commun. Surv.Tutorials PP (99) (2014) 1–29, doi: 10.
1109/COMST.2014.2320094 .

[19] A.R. Curtis , J.C. Mogul , J. Tourrilhes , P. Yalagandula , P. Sharma , S. Banerjee , De-
voFlow: scaling flow management for high-performance networks, in: ACM

SIGCOMM, 2011 .

20] S. Hu , K. Chen , H. Wu , W. Bai , C. Lan , H. Wang , H. Zhao , C. Guo , Explicit path
control in commodity data centers: design and applications, in: USENIX NSDI,

2015 .
[21] R. Cohen , L. Lewin-Eytan , J.S. Naor , D. Raz , On the effect of forwarding table

size on SDN network utilization, in: IEEE INFOCOM, 2014 .
22] T. Benson , A. Akella , D.A. Maltz , Network traffic characteristics of data centers

in the wild, in: ACM IMC, 2010 .
23] L. Popa , P. Yalagandula , S. Banerjee , J.C. Mogul , Y. Turner , J.R. Santos , Elastic-

Switch: practical work-conserving bandwidth guarantees for cloud computing,

in: ACM SIGCOMM, 2013 .
[24] M. Yu , J. Rexford , M.J. Freedman , J. Wang , Scalable flow-based networking with

DIFANE, in: ACM SIGCOMM, 2010 .
25] S. Hassas Yeganeh , Y. Ganjali , Kandoo: a framework for efficient and scalable

offloading of control applications, in: ACM HotSDN, 2012 .

http://dx.doi.org/10.13039/501100003545
http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0003
http://dx.doi.org/10.1145/2934872.2934890
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0006
http://dx.doi.org/10.1145/2934872.2934889
http://dx.doi.org/10.1145/2934872.2934903
http://dx.doi.org/10.1145/2184319.2184335
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0014
http://dx.doi.org/10.1145/2934872.2934888
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0017
http://dx.doi.org/10.1109/COMST.2014.2320094
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0025

124 D.S. Marcon et al. / Computer Networks 127 (2017) 109–125

[26] D. Xie , N. Ding , Y.C. Hu , R. Kompella , The only constant is change: incorpo-
rating time-varying network reservations in data centers, in: ACM SIGCOMM,

2012 .
[27] K. LaCurts , S. Deng , A. Goyal , H. Balakrishnan , Choreo: network-aware task

placement for cloud applications, in: ACM IMC, 2013 .
[28] D.S. Marcon , M.P. Barcellos , Predictor: providing fine-grained management and

predictability in multi-tenant datacenter networks, in: IFIP/IEEE IM, 2015 .
[29] M. Al-Fares , S. Radhakrishnan , B. Raghavan , N. Huang , A. Vahdat , Hedera: dy-

namic flow scheduling for data center networks, in: USENIX NSDI, 2010 .

[30] A.R. Curtis , W. Kim , P. Yalagandula , Mahout: low-overhead datacenter traf-
fic management using end-host-based elephant detection, in: IEEE INFOCOM,

2011 .
[31] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, M. Handley, Data cen-

ter networking with multipath TCP, in: Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, ACM, New York, NY, USA,

2010, pp. 10:1–10:6, doi: 10.1145/1868447.1868457 .

[32] H. Ballani , P. Costa , T. Karagiannis , A. Rowstron , Towards predictable datacenter
networks, in: ACM SIGCOMM, 2011 .

[33] V. Jeyakumar , M. Alizadeh , D. Mazières , B. Prabhakar , C. Kim , A. Greenberg ,
EyeQ: practical network performance isolation at the edge, in: USENIX NSDI,

2013 .
[34] J. Guo , F. Liu , D. Zeng , J. Lui , H. Jin , A cooperative game based allocation for

sharing data center networks, in: IEEE INFOCOM, 2013 .

[35] W. Li, K. Li, D. Guo, G. Min, H. Qi, J. Zhang, Cost-minimizing bandwidth guar-
antee for inter-datacenter traffic, IEEE Trans. Cloud Comput. PP (99) (2016),

doi: 10.1109/TCC.2016.2629506 . 1–1.
[36] V.T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, G. Varghese, Netshare and

stochastic netshare: predictable bandwidth allocation for data centers, SIG-
COMM Comput. Commun. Rev. 42 (3) (2012) 5–11, doi: 10.1145/2317307.

2317309 .

[37] L. Popa , G. Kumar , M. Chowdhury , A. Krishnamurthy , S. Ratnasamy , I. Stoica ,
FairCloud: sharing the network in cloud computing, in: ACM SIGCOMM, 2012 .

[38] M. Barbera, A. Lombardo, C. Panarello, G. Schembra, Active window manage-
ment: an efficient gateway mechanism for TCP traffic control, in: 2007 IEEE In-

ternational Conference on Communications, 2007, pp. 6141–6148, doi: 10.1109/
ICC.2007.1017 .

[39] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,

S. Shenker , J. Turner , Openflow: enabling innovation in campus networks, SIG-
COMM Comput. Commun. Rev. 38 (2) (2008) 69–74 .

[40] G. Judd , M. Stanley , Attaining the promise and avoiding the pitfalls of TCP in
the datacenter, in: USENIX NSDI, 2015 .

[41] J. Schad , J. Dittrich , J.-A. Quiané-Ruiz , Runtime measurements in the cloud: ob-
serving, analyzing, and reducing variance, Proc. VLDB Endow. 3 (1–2) (2010)

460–471 .

[42] G. Wang , T.S.E. Ng , The impact of virtualization on network performance of
amazon EC2 data center, in: IEEE INFOCOM, 2010 .

[43] R. Shea , F. Wang , H. Wang , J. Liu , A deep investigation into network perfor-
mance in virtual machine based cloud environment, in: IEEE INFOCOM, 2014 .

[44] H. Shen , Z. Li , New bandwidth sharing and pricing policies to achieve aw-
in-win situation for cloud provider and tenants, in: IEEE INFOCOM, 2014 .

[45] P. Gill , N. Jain , N. Nagappan , Understanding network failures in data centers:
measurement, analysis, and implications, in: ACM SIGCOMM, 2011 .

[46] M. Alizadeh , A. Greenberg , D.A. Maltz , J. Padhye , P. Patel , B. Prabhakar , S. Sen-

gupta , M. Sridharan , Data center TCP (DCTCP), in: ACM SIGCOMM, 2010 .
[47] S. Kandula , S. Sengupta , A. Greenberg , P. Patel , R. Chaiken , The nature of data

center traffic: measurements & analysis, in: ACM IMC, 2009 .
[48] K. He , J. Khalid , A. Gember-Jacobson , S. Das , C. Prakash , A. Akella , L.E. Li ,

M. Thottan , Measuring control plane latency in SDN-enabled switches, in: ACM
SOSR, 2015 .

[49] S.A. Jyothi , M. Dong , P.B. Godfrey , Towards a flexible data center fabric with

source routing, in: USENIX NSDI, 2015 .
[50] A .D. Ferguson , A . Guha , C. Liang , R. Fonseca , S. Krishnamurthi , Participatory
networking: an API for application control of SDNs, in: ACM SIGCOMM, 2013 .

[51] B. Pfaff, J. Pettit , T. Koponen , E. Jackson , A. Zhou , J. Rajahalme , J. Gross ,
A. Wang , J. Stringer , P. Shelar , K. Amidon , M. Casado , The design and imple-

mentation of open vSwitch, in: USENIX NSDI, 2015 .
[52] M. Chowdhury, M.R. Rahman, R. Boutaba, Vineyard: virtual network embed-

ding algorithms with coordinated node and link mapping, IEEE/ACM Trans.
Netw. 20 (1) (2012) 206–219, doi: 10.1109/TNET.2011.2159308 .

[53] H. Moens , B. Hanssens , B. Dhoedt , F. De Turck , Hierarchical network-aware

placement of service oriented applications in clouds, in: IEEE/IFIP NOMS, 2014 .
[54] L. Chen , Y. Feng , B. Li , B. Li , Towards performance-centric fairness in datacenter

networks, in: IEEE INFOCOM, 2014 .
[55] N. Chowdhury , M. Rahman , R. Boutaba , Virtual network embedding with coor-

dinated node and link mapping, in: IEEE INFOCOM, 2009 .
[56] Amazon EC2, 2014, Available at: http://www.goo.gl/Fa90nC .

[57] L. Muller , R. Oliveira , M. Luizelli , L. Gaspary , M. Barcellos , Survivor: an en-

hanced controller placement strategy for improving SDN survivability, in: IEEE
GLOBECOM, 2014 .

[58] Y. Hu , W. Wendong , X. Gong , X. Que , C. Shiduan , Reliability-aware controller
placement for software-defined networks, in: IFIP/IEEE IM, 2013 .

[59] P. Berde , M. Gerola , J. Hart , Y. Higuchi , M. Kobayashi , T. Koide , B. Lantz ,
B. O’Connor , P. Radoslavov , W. Snow , G. Parulkar , Onos: towards an open, dis-

tributed SDN os, in: ACM HotSDN, 2014 .

[60] F.J. Ros , P.M. Ruiz , Five nines of southbound reliability in software-defined net-
works, in: ACM HotSDN, 2014 .

[61] C. Chen , C. Liu , P. Liu , B.T. Loo , L. Ding , A scalable multi-datacenter layer-2
network architecture, in: ACM SOSR, 2015 .

[62] B. Heller , R. Sherwood , N. McKeown , The controller placement problem, in:
ACM HotSDN, 2012 .

[63] D. Adami , B. Martini , M. Gharbaoui , P. Castoldi , G. Antichi , S. Giordano , Ef-

fective resource control strategies using openflow in cloud data center, in:
IFIP/IEEE IM, 2013 .

[64] R. Grandl , G. Ananthanarayanan , S. Kandula , S. Rao , A. Akella , Multi-resource
packing for cluster schedulers, in: ACM SIGCOMM, 2014 .

[65] M. Moshref, M. Yu, R. Govindan, A. Vahdat, Trumpet: timely and precise trig-
gers in data centers, in: Proceedings of the 2016 Conference on ACM SIGCOMM

2016 Conference, SIGCOMM ’16, ACM, New York, NY, USA, 2016, pp. 129–143,

doi: 10.1145/2934872.2934879 .
[66] Y. Nakagawa, K. Hyoudou, C. Lee, S. Kobayashi, O. Shiraki, T. Shimizu, Domain-

flow: practical flow management method using multiple flow tables in com-
modity switches, in: Proceedings of the Ninth ACM Conference on Emerging

Networking Experiments and Technologies, CoNEXT ’13, ACM, New York, NY,
USA, 2013, pp. 399–404, doi: 10.1145/2535372.2535406 .

[67] Switching Made Smarter, 2015, Available at: http://www.noviflow.com/

products/noviswitch/ .
[68] D. Kreutz , F.M.V. Ramos , P. Veríssimo , C.E. Rothenberg , S. Azodolmolky , S. Uh-

lig , Software-defined networking: a comprehensive survey, CoRR (2014) .
[69] K. Phemius , M. Bouet , Openflow: why latency does matter, in: IFIP/IEEE IM,

2013 .
[70] J.C. Mogul, L. Popa, What we talk about when we talk about cloud network

performance, SIGCOMM Comput. Commun. Rev. 42 (5) (2012) 44–48, doi: 10.
1145/2378956.2378964 .

[71] N.G. Duffield , P. Goyal , A. Greenberg , P. Mishra , K.K. Ramakrishnan , J.E. van der

Merive , A flexible model for resource management in virtual private networks,
in: ACM SIGCOMM, 1999 .

[72] A. Ousterhout , J. Perry , H. Balakrishnan , P. Lapukhov , Flexplane: an experi-
mentation platform for resource management in datacenters, in: 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 17),
USENIX Association, Boston, MA, 2017, pp. 438–451 .

[73] CloudLab, 2016, Available at : https://www.cloudlab.us .

http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0030
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0030
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0030
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0030
http://dx.doi.org/10.1145/1868447.1868457
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0032
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0032
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0032
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0032
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0032
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0033
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0034
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0034
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0034
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0034
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0034
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0034
http://dx.doi.org/10.1109/TCC.2016.2629506
http://dx.doi.org/10.1145/2317307.2317309
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0037
http://dx.doi.org/10.1109/ICC.2007.1017
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0039
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0040
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0040
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0040
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0041
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0041
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0041
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0041
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0042
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0042
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0042
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0043
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0043
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0043
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0043
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0043
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0044
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0044
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0044
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0045
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0045
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0045
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0045
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0046
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0047
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0047
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0047
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0047
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0047
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0047
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0048
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0049
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0049
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0049
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0049
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0050
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0050
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0050
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0050
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0050
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0050
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0051
http://dx.doi.org/10.1109/TNET.2011.2159308
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0053
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0053
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0053
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0053
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0053
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0054
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0054
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0054
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0054
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0054
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0055
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0055
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0055
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0055
http://www.goo.gl/Fa90nC
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0056
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0056
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0056
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0056
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0056
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0056
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0057
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0057
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0057
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0057
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0057
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0057
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0058
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0059
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0059
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0059
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0060
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0060
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0060
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0060
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0060
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0060
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0061
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0061
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0061
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0061
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0062
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0063
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0063
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0063
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0063
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0063
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0063
http://dx.doi.org/10.1145/2934872.2934879
http://dx.doi.org/10.1145/2535372.2535406
http://www.noviflow.com/products/noviswitch/
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0066
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0067
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0067
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0067
http://dx.doi.org/10.1145/2378956.2378964
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0069
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0070
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0070
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0070
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0070
http://refhub.elsevier.com/S1389-1286(17)30319-5/sbref0070
https://www.cloudlab.us

D.S. Marcon et al. / Computer Networks 127 (2017) 109–125 125

io dos Sinos – UNISINOS, Brazil. He received his Ph.D. in Computer Science from Federal

 holds a B.Sc. degree in Computer Science from UNISINOS (2011) and a M.Sc. degree in
sts include datacenter networks, cloud computing, network virtualization and software-

ce student at the Institute of Informatics of the Federal University of Rio Grande do Sul

fined networking (SDN), network virtualization and datacenter networks. More informa-
8009957 .

 Science from University of Newcastle Upon Tyne (1998). Since 2008 Prof. Barcellos has

(UFRGS), where he is an Associate Professor. He has authored many papers in leading
twork and service management, and computer security, also serving as TPC member and

al tutorials and invited talks. His work as a speaker has been consistently distinguished
air of the Special Interest Group on Computer Security of the Brazilian Computer Society

. His current research interests are datacenter networks, software-defined networking,
se networks. He was the General Co-Chair of ACM SIGCOMM 2016 and TPC Co-Chair of

.inf.ufrgs.br/ ∼marinho .
Daniel S. Marcon is a professor at University of Vale do R

University of Rio Grande do Sul – UFRGS, Brazil. He also
Computer Science from UFRGS (2013). His research intere

defined networking (SDN).

Fabrício M. Mazzola is an undergraduate Computer Scien

(UFRGS), Brazil. His research interests include software-de
tion can be found at http://www.lattes.cnpq.br/224305309

Marinho P. Barcellos received a PhD degree in Computer

been with the Federal University of Rio Grande do Sul
journals and conferences related to computer networks, ne

chair. He has authored book chapters and delivered sever
by graduating students. Prof. Barcellos was the elected ch

(CESeg/SBC) 2011- 2012. He is a member of SBC and ACM
information-centric networks and security aspects of tho

SBRC 2016. More information can be found at http://www

http://www.lattes.cnpq.br/2243053098009957
http://www.inf.ufrgs.br/~marinho

	Achieving minimum bandwidth guarantees and work-conservation in large-scale, SDN-based datacenter networks
	1 Introduction
	2 Related work
	3 Motivation and research challenges
	3.1 Datacenter network sharing
	3.2 Scalability challenges of SDN/openflow in DCNs

	4 Predictor overview
	5 System description
	5.1 Application requests
	5.2 Bandwidth guarantees
	5.3 Resource sharing
	5.3.1 Resource allocation
	5.3.2 Work-Conserving rate enforcement

	5.4 Control plane design

	6 Evaluation
	6.1 Setup
	6.2 Implementation aspects of predictor
	6.3 Results

	7 Discussion
	8 Conclusion
	 Acknowledgments
	 References

